300 research outputs found

    Post-transcriptional regulation of tyrosine hydroxylase gene expression by oxygen in PC12 Cells

    Get PDF
    Post-transcriptional regulation of tyrosine hydroxylase gene expression by oxygen in PC12 cells. Reduced oxygen tension (hypoxia) leads to increased stability of mRNA for tyrosine hydroxylase (TH), the rate limiting enzyme in biosynthesis of catecholamine neurotransmitters. Hypoxia increases the half life of TH mRNA from 10 to 30 hours. The increased stability of TH mRNA during hypoxia results from fast enhanced binding of a cytoplasmic protein (hypoxia inducible protein, HIP) to a pyrimidine-rich sequence within the 3′ untranslated region (3′UTR) of TH mRNA. This novel cis-element is referred to as hypoxia-inducible protein binding site (HIPBS) and is located between bases 1551 and 1578 of the 3′UTR of TH mRNA. We identified that the (U/C)(C/U)CCCU motif within the HIPBS represents the optimum protein-binding site. Mutations within this region that abolish protein binding prevent also regulation of TH mRNA stability during hypoxia. UV-crosslinking and SDS-PAGE analysis of the HIPBS-protein complexes showed the presence of a major 50kDa complex. The formation of the complex was augmented when protein extracts were obtained from PC12 cells exposed to 5% O2. Importantly, formation of the 50kDa complex was also increased when protein extracts were obtained from carotid bodies or superior cervical ganglia from rats exposed to 10% hypoxia for twenty-four hours

    Hypoxia stimulates binding of a cytoplasmic protein to a pyrimidine-rich sequence in the 3'-untranslated region of rat tyrosine hydroxylase mRNA

    Get PDF
    Reduced oxygen tension (hypoxia) induces a 3-fold increase in stability of mRNA for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis, in the pheochromocytoma (PC12) clonal cell line. To investigate the possibility that RNA-protein interactions are involved in mediating this increase in stability, RNA gel shift assays were performed using different fragments of labeled TH mRNA and the S-100 fraction of PC12 cytoplasmic protein extracts. We identified a sequence within the 3'-untranslated region of TH mRNA that binds cytoplasmic protein

    Contribution of the first K-homology domain of poly(C)-binding protein 1 to its affinity and specificity for C-rich oligonucleotides

    Get PDF
    Poly-C-binding proteins are triple KH (hnRNP K homology) domain proteins with specificity for single stranded C-rich RNA and DNA. They play diverse roles in the regulation of protein expression at both transcriptional and translational levels. Here, we analyse the contributions of individual αCP1 KH domains to binding C-rich oligonucleotides using biophysical and structural methods. Using surface plasmon resonance (SPR), we demonstrate that KH1 makes the most stable interactions with both RNA and DNA, KH3 binds with intermediate affinity and KH2 only interacts detectibly with DNA. The crystal structure of KH1 bound to a 5′-CCCTCCCT-3′ DNA sequence shows a 2:1 protein:DNA stoichiometry and demonstrates a molecular arrangement of KH domains bound to immediately adjacent oligonucleotide target sites. SPR experiments, with a series of poly-C-sequences reveals that cytosine is preferred at all four positions in the oligonucleotide binding cleft and that a C-tetrad binds KH1 with 10 times higher affinity than a C-triplet. The basis for this high affinity interaction is finally detailed with the structure determination of a KH1.W.C54S mutant bound to 5′-ACCCCA-3′ DNA sequence. Together, these data establish the lead role of KH1 in oligonucleotide binding by αCP1 and reveal the molecular basis of its specificity for a C-rich tetrad

    Quantitative Proteomics Identifies the Myb-Binding Protein p160 as a Novel Target of the von Hippel-Lindau Tumor Suppressor

    Get PDF
    Background: The von Hippel-Lindau (VHL) tumor suppressor gene encodes a component of a ubiquitin ligase complex, which is best understood as a negative regulator of hypoxia inducible factor (HIF). VHL ubiquitinates and degrades the a subunits of HIF, and this is proposed to suppress tumorigenesis and tumor angiogenesis. However, several lines of evidence suggest that there are unidentified substrates or targets for VHL that play important roles in tumor suppression. Methodology/Principal Findings: Employing quantitative proteomics, we developed an approach to systematically identify the substrates of ubiquitin ligases and using this method, we identified the Myb-binding protein p160 as a novel substrate of VHL. Conclusions/Significance: A major barrier to understanding the functions of ubiquitin ligases has been the difficulty in pinpointing their ubiquitination substrates. The quantitative proteomics approach we devised for the identification of VHL substrates will be widely applicable to other ubiquitin ligases

    Mutation of von Hippel–Lindau Tumour Suppressor and Human Cardiopulmonary Physiology

    Get PDF
    BACKGROUND: The von Hippel–Lindau tumour suppressor protein–hypoxia-inducible factor (VHL–HIF) pathway has attracted widespread medical interest as a transcriptional system controlling cellular responses to hypoxia, yet insights into its role in systemic human physiology remain limited. Chuvash polycythaemia has recently been defined as a new form of VHL-associated disease, distinct from the classical VHL-associated inherited cancer syndrome, in which germline homozygosity for a hypomorphic VHL allele causes a generalised abnormality in VHL–HIF signalling. Affected individuals thus provide a unique opportunity to explore the integrative physiology of this signalling pathway. This study investigated patients with Chuvash polycythaemia in order to analyse the role of the VHL–HIF pathway in systemic human cardiopulmonary physiology. METHODS AND FINDINGS: Twelve participants, three with Chuvash polycythaemia and nine controls, were studied at baseline and during hypoxia. Participants breathed through a mouthpiece, and pulmonary ventilation was measured while pulmonary vascular tone was assessed echocardiographically. Individuals with Chuvash polycythaemia were found to have striking abnormalities in respiratory and pulmonary vascular regulation. Basal ventilation and pulmonary vascular tone were elevated, and ventilatory, pulmonary vasoconstrictive, and heart rate responses to acute hypoxia were greatly increased. CONCLUSIONS: The features observed in this small group of patients with Chuvash polycythaemia are highly characteristic of those associated with acclimatisation to the hypoxia of high altitude. More generally, the phenotype associated with Chuvash polycythaemia demonstrates that VHL plays a major role in the underlying calibration and homeostasis of the respiratory and cardiovascular systems, most likely through its central role in the regulation of HIF

    Microtubular Stability Affects pVHL-Mediated Regulation of HIF-1alpha via the p38/MAPK Pathway in Hypoxic Cardiomyocytes

    Get PDF
    BACKGROUND: Our previous research found that structural changes of the microtubule network influence glycolysis in cardiomyocytes by regulating the hypoxia-inducible factor (HIF)-1α during the early stages of hypoxia. However, little is known about the underlying regulatory mechanism of the changes of HIF-1α caused by microtubule network alternation. The von Hippel-Lindau tumor suppressor protein (pVHL), as a ubiquitin ligase, is best understood as a negative regulator of HIF-1α. METHODOLOGY/PRINCIPAL FINDINGS: In primary rat cardiomyocytes and H9c2 cardiac cells, microtubule-stabilization was achieved by pretreating with paclitaxel or transfection of microtubule-associated protein 4 (MAP4) overexpression plasmids and microtubule-depolymerization was achieved by pretreating with colchicine or transfection of MAP4 siRNA before hypoxia treatment. Recombinant adenovirus vectors for overexpressing pVHL or silencing of pVHL expression were constructed and transfected in primary rat cardiomyocytes and H9c2 cells. With different microtubule-stabilizing and -depolymerizing treaments, we demonstrated that the protein levels of HIF-1α were down-regulated through overexpression of pVHL and were up-regulated through knockdown of pVHL in hypoxic cardiomyocytes. Importantly, microtubular structure breakdown activated p38/MAPK pathway, accompanied with the upregulation of pVHL. In coincidence, we found that SB203580, a p38/MAPK inhibitor decreased pVHL while MKK6 (Glu) overexpression increased pVHL in the microtubule network altered-hypoxic cardiomyocytes and H9c2 cells. CONCLUSIONS/SIGNIFICANCE: This study suggests that pVHL plays an important role in the regulation of HIF-1α caused by the changes of microtubular structure and the p38/MAPK pathway participates in the process of pVHL change following microtubule network alteration in hypoxic cardiomyocytes

    Revisiting cAMP signaling in the carotid body

    Get PDF
    Chronic carotid body (CB) activation is now recognized as being essential in the development of hypertension and promoting insulin resistance; thus, it is imperative to characterize the chemotransduction mechanisms of this organ in order to modulate its activity and improve patient outcomes. For several years, and although controversial, cyclic adenosine monophosphate (cAMP) was considered an important player in initiating the activation of the CB. However, its relevance was partially displaced in the 90s by the emerging role of the mitochondria and molecules such as AMP-activated protein kinase and O(2)-sensitive K(+) channels. Neurotransmitters/neuromodulators binding to metabotropic receptors are essential to chemotransmission in the CB, and cAMP is central to this process. cAMP also contributes to raise intracellular Ca(2+) levels, and is intimately related to the cellular energetic status (AMP/ATP ratio). Furthermore, cAMP signaling is a target of multiple current pharmacological agents used in clinical practice. This review (1) provides an outline on the classical view of the cAMP-signaling pathway in the CB that originally supported its role in the O(2)/CO(2) sensing mechanism, (2) presents recent evidence on CB cAMP neuromodulation and (3) discusses how CB activity is affected by current clinical therapies that modify cAMP-signaling, namely dopaminergic drugs, caffeine (modulation of A(2A)/A(2B) receptors) and roflumilast (PDE4 inhibitors). cAMP is key to any process that involves metabotropic receptors and the intracellular pathways involved in CB disease states are likely to involve this classical second messenger. Research examining the potential modification of cAMP levels and/or interactions with molecules associated with CB hyperactivity is currently in its beginning and this review will open doors for future explorations

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Low VHL mRNA Expression is Associated with More Aggressive Tumor Features of Papillary Thyroid Carcinoma

    Get PDF
    Alterations of the von Hippel-Lindau (VHL) tumor suppressor gene can cause different hereditary tumors associated with VHL syndrome, but the potential role of the VHL gene in papillary thyroid carcinoma (PTC) has not been characterized. This study set out to investigate the relationship of VHL expression level with clinicopathological features of PTC in an ethnically and geographically homogenous group of 264 patients from Serbia, for the first time. Multivariate logistic regression analysis showed a strong correlation between low level of VHL expression and advanced clinical stage (OR55.78, 95% CI 3.17-10.53, P<0.0001), classical papillary morphology of the tumor (OR52.92, 95% CI 1.33-6.44, P=50.008) and multifocality (OR51.96, 95% CI 1.06-3.62, P=50.031). In disease-free survival analysis, low VHL expression had marginal significance (P=50.0502 by the log-rank test) but did not appear to be an independent predictor of the risk for chance of faster recurrence in a proportion hazards model. No somatic mutations or evidence of VHL downregulation via promoter hypermethylation in PTC were found. The results indicate that the decrease of VHL expression associates with tumor progression but the mechanism of downregulation remains to be elucidated
    corecore