31 research outputs found

    Rapid Replication of High Aspect Ratio Molds for UV Embossing

    Get PDF
    This paper describes a promising fabrication technique for rapid replication of high aspect ratio microstructured molds for UV embossing. The process involves casting silicone rubber on a microstructured master, replicating an epoxy mold using the PDMS rubber mold and finally, metallizing the surfaces of the epoxy mold by electroless plating nickel (EN). The preliminary study suggests that this technique is feasible for rapid replication of high aspect ratio molds for UV embossing. Uniform molds can be replicated rapidly through this technique making the process economical and accessible.Singapore-MIT Alliance (SMA

    Pharmaceutical Properties of Nanoparticulate Formulation Composed of TPGS and PLGA for Controlled Delivery of Anticancer Drug

    Get PDF
    A suitable management of the pharmaceutical property is needed and helpful to design a desired nanoparticulate delivery system, which includes the carrier nature, particle size and size distribution, morphology, surfactant stabiliser according to the technique applied, drug-loading ratio and encapsulation efficiency, surface property, etc. All will influence the in vitro release, in vivo behaviour and tissue distribution of administered particulate drug loaded nanoparticles. The main purpose of the present work was to determine the effect of drug loading ratio when employing TPGS as surfactant stabiliser and/or matrix material to improve the nanoparticulate formulation. The model drug employed was paclitaxel.Singapore-MIT Alliance (SMA

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.Peer reviewe

    Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight NCD Risk Factor Collaboration (NCD-RisC)

    Get PDF
    From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions

    Electrochemical detection of uric acid on exfoliated nanosheets of graphitic-like carbon nitride (g-C3N4) based sensor

    No full text
    A highly sensitive, selective and stable electrochemical sensor for detection of uric acid (UA) in aqueous solution has been successfully developed by deposition of exfoliated graphitic-like carbon nitride (g-C3N4) nanosheets on glassy carbon electrode (GCE). The synthesized g-C3N4 was confirmed by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) and Raman spectroscopies. Field-emission scanning electron microscopy (FE-SEM) and High-resolution transmission electron microscopy (HR-TEM) were used to investigate the crystalline structure of g-C3N4. The elemental composition was characterized by energy-dispersive X-ray spectroscopy (EDXS). Compared to bare GCE, exfoliated g-C3N4 nanosheets (NS) modified GCE exhibited higher catalytic current for UA electro-oxidation at reduced over potential in 0.1 M phosphate buffered saline solution (PBS), which is essential to discriminate interfering analytes. g-C3N4 NS modified GCE showed a linear relationship between the electrochemical signal and the UA concentration from 100 to 1000 μM with fast response by differential pulse voltammetry (DPV). The common interferent molecules such as dopamine, ascorbic acid, folic acid, paracetamol, lactic acid, oxalic acid, cysteine, and ciprofloxacin were tested in 0.1 M PBS for the g-C3N4 NS modified GCE. It was found that these molecules did not affect the oxidation current of UA when they co-existed in the same buffer solution. Moreover, the modified sensor probe was tested for UA in urine samples with satisfactory recovery values. The proposed sensor offers high accuracy, sensitivity, simple fabrication and low cost. We suggest that g-C3N4 NS based sensor can be useful for UA analysis in medical, environmental, food and industrial applications.Published versio

    Supramolecular self-assembly of poly(ethylene glycol)-b-poly(l-lysine) and EDTA into nanofibers and their synergistic inhibition of Escherichia coli proliferation

    No full text
    Supramolecular assembly of amphiphilic polymer poly(ethylene glycol)-b-poly(l-lysine) (PEG-b-PLL) and ethylenediaminetetraacetic acid (EDTA) were used to efficiently inhibit E. coli proliferation. PEG-b-PLL is a moderate antibacterial polymer itself with a minimum inhibitory concentration (MIC) of 43.8 μg/mL, and it inhibits bacteria by the electrostatic interactions and hydrophobic interactions with bacteria membrane. EDTA induces the lipopolysaccharide release and enhanced membrane permeability of E. coli, and affects the divalent ion equilibrium on the bacteria membrane. The self-assembly of PEG-b-PLL and EDTA into spindly nanofibers, showing synergistic inhibition of E. coli (MIC: 10.9 μg/mL). Our strategy provides a new way of designing supramolecular antibacterials with synergistic antibacterial effects by virtue of different inhibition mechanisms.MOE (Min. of Education, S’pore)NMRC (Natl Medical Research Council, S’pore)MOH (Min. of Health, S’pore)Accepted versio

    Plasma polymerization of C4F8 thin film on high aspect ratio silicon molds

    Get PDF
    High aspect ratio polymeric micro-patterns are ubiquitous in many fields ranging from sensors, actuators, optics, fluidics and medical. Second generation PDMS molds are replicated against first generation silicon molds created by deep reactive ion etching. In order to ensure successful demolding, the silicon molds are coated with a thin layer of C[subscript 4]F[subscript 8] plasma polymer to reduce the adhesion force. Peel force and demolding status are used to determine if delamination is successful. Response surface method is employed to provide insights on how changes in coil power, passivating time and gas flow conditions affect plasma polymerization of C[subscript 4]F[subscript 8].Singapore-MIT Alliance (SMA

    Binding modes of teixobactin to lipid ii : molecular dynamics study

    No full text
    Teixobactin (TXB) is a newly discovered antibiotic targeting the bacterial cell wall precursor Lipid II (LII). In the present work, four binding modes of TXB on LII were identified by a contact-map based clustering method. The highly flexible binary complex ensemble was generated by parallel tempering metadynamics simulation in a well-tempered ensemble (PTMetaD-WTE). In agreement with experimental findings, the pyrophosphate group and the attached first sugar subunit of LII are found to be the minimal motif for stable TXB binding. Three of the four binding modes involve the ring structure of TXB and have relatively higher binding affinities, indicating the importance of the ring motif of TXB in LII recognition. TXB-LII complexes with a ratio of 2:1 are also predicted with configurations such that the ring motif of two TXB molecules bound to the pyrophosphate-MurNAc moiety and the glutamic acid residue of one LII, respectively. Our findings disclose that the ring motif of TXB is critical to LII binding and novel antibiotics can be designed based on its mimetics.MOE (Min. of Education, S’pore)Published versio

    Glycosylated copper sulfide nanocrystals for targeted photokilling of bacteria in the near‐infrared II window

    No full text
    Photothermal and photodynamic therapies are established as alternative approaches to combating bacterial infections; however, the heat and reactive oxygen species generated by the photoagents act on both normal and bacterial cells. A targeting strategy is thus required to minimize side effects and enhance the antibacterial efficiency. Glycoconjugates specifically interacting with bacterial lectins have emerged as a new class of materials for targeting bacteria. In this paper, galactosylated plasmonic copper sulfide nanocrystals (Cu2−xS NCs) are used to target Pseudomonas aeruginosa via galactose–LecA interactions and kill the bacteria by simultaneous photothermal and photodynamic therapy. Galactosylated Cu2−xS NCs are obtained by functionalizing the nanocrystals with tri‐thiogalactoside glycoclusters. The excellent specificity of galactosylated nanoparticles toward LecA with a LecA‐deficient P. aeruginosa strain as the control is first demonstrated. Afterward, a laser in the near‐infrared II window is used to kill the bacteria, and the critical role of targeted binding in efficient killing of bacteria is highlighted. This approach can be readily generalized to the targeting of other pathogens which have highly specific carbohydrate‐binding lectins.MOE (Min. of Education, S’pore)MOH (Min. of Health, S’pore)Accepted versio
    corecore