58 research outputs found

    A MAPS Based Micro-Vertex Detector for the STAR Experiment

    Get PDF
    For the 2014 heavy ion run of RHIC a new micro-vertex detector called the Heavy Flavor Tracker (HFT) was installed in the STAR experiment. The HFT consists of three detector subsystems with various silicon technologies arranged in 4 approximately concentric cylinders close to the STAR interaction point designed to improve the STAR detector's vertex resolution and extend its measurement capabilities in the heavy flavor domain. The two innermost HFT layers are placed at radii of 2.8 cm and 8 cm from the beam line. These layers are constructed with 400 high resolution sensors based on CMOS Monolithic Active Pixel Sensor (MAPS) technology arranged in 10-sensor ladders mounted on 10 thin carbon fiber sectors to cover a total silicon area of 0.16 m 2 . Each sensor of this PiXeL (\u201cPXL\u201d) sub-detector combines a pixel array of 928 rows and 960 columns with a 20.7 \u3bcm pixel pitch together with front-end electronics and zero-suppression circuitry in one silicon die providing a sensitive area of 3c3.8 cm 2 . This sensor architecture features 185.6 \u3bcs readout time and 170 mW/cm 2 power dissipation. This low power dissipation allows the PXL detector to be air-cooled, and with the sensors thinned down to 50 \u3bcm results in a global material budget of only 0.4% radiation length per layer. A novel mechanical approach to detector insertion allows us to effectively install and integrate the PXL sub-detector within a 12 hour period during an on-going multi-month data taking period. The detector requirements, architecture and design, as well as the performance after installation, are presented in this paper

    Device-measured physical activity, adiposity and mortality: a harmonised meta-analysis of eight prospective cohort studies

    Get PDF
    Background: The joint associations of total and intensity-specific physical activity with obesity in relation to all-cause mortality risk are unclear. Methods: We included 34 492 adults (72% women, median age 62.1 years, 2034 deaths during follow-up) in a harmonised meta-analysis of eight population-based prospective cohort studies with mean follow-up ranging from 6.0 to 14.5 years. Standard body mass index categories were cross-classified with sample tertiles of device-measured total, light-to-vigorous and moderate-to-vigorous physical activity and sedentary time. In five cohorts with waist circumference available, high and low waist circumference was combined with tertiles of moderate-to-vigorous physical activity. Results: There was an inverse dose–response relationship between higher levels of total and intensity-specific physical activity and mortality risk in those who were normal weight and overweight. In individuals with obesity, the inverse dose–response relationship was only observed for total physical activity. Similarly, lower levels of sedentary time were associated with lower mortality risk in normal weight and overweight individuals but there was no association between sedentary time and risk of mortality in those who were obese. Compared with the obese-low total physical activity reference, the HRs were 0.59 (95% CI 0.44 to 0.79) for normal weight-high total activity and 0.67 (95% CI 0.48 to 0.94) for obese-high total activity. In contrast, normal weight-low total physical activity was associated with a higher risk of mortality compared with the obese-low total physical activity reference (1.28; 95% CI 0.99 to 1.67). Conclusions: Higher levels of physical activity were associated with lower risk of mortality irrespective of weight status. Compared with obesity-low physical activity, there was no survival benefit of being normal weight if physical activity levels were low.publishedVersio

    Device-measured physical activity, adiposity and mortality: a harmonised meta-analysis of eight prospective cohort studies.

    Get PDF
    BACKGROUND: The joint associations of total and intensity-specific physical activity with obesity in relation to all-cause mortality risk are unclear. METHODS: We included 34 492 adults (72% women, median age 62.1 years, 2034 deaths during follow-up) in a harmonised meta-analysis of eight population-based prospective cohort studies with mean follow-up ranging from 6.0 to 14.5 years. Standard body mass index categories were cross-classified with sample tertiles of device-measured total, light-to-vigorous and moderate-to-vigorous physical activity and sedentary time. In five cohorts with waist circumference available, high and low waist circumference was combined with tertiles of moderate-to-vigorous physical activity. RESULTS: There was an inverse dose-response relationship between higher levels of total and intensity-specific physical activity and mortality risk in those who were normal weight and overweight. In individuals with obesity, the inverse dose-response relationship was only observed for total physical activity. Similarly, lower levels of sedentary time were associated with lower mortality risk in normal weight and overweight individuals but there was no association between sedentary time and risk of mortality in those who were obese. Compared with the obese-low total physical activity reference, the HRs were 0.59 (95% CI 0.44 to 0.79) for normal weight-high total activity and 0.67 (95% CI 0.48 to 0.94) for obese-high total activity. In contrast, normal weight-low total physical activity was associated with a higher risk of mortality compared with the obese-low total physical activity reference (1.28; 95% CI 0.99 to 1.67). CONCLUSIONS: Higher levels of physical activity were associated with lower risk of mortality irrespective of weight status. Compared with obesity-low physical activity, there was no survival benefit of being normal weight if physical activity levels were low

    The STAR MAPS-based PiXeL detector

    Get PDF
    The PiXeL detector (PXL) for the Heavy Flavor Tracker (HFT) of the STAR experiment at RHIC is the first application of the state-of-the-art thin Monolithic Active Pixel Sensors (MAPS) technology in a collider environment. Custom built pixel sensors, their readout electronics and the detector mechanical structure are described in detail. Selected detector design aspects and production steps are presented. The detector operations during the three years of data taking (2014-2016) and the overall performance exceeding the design specifications are discussed in the conclusive sections of this paper

    Daily steps and all-cause mortality: a meta-analysis of 15 international cohorts

    Get PDF
    Background Although 10000 steps per day is widely promoted to have health benefits, there is little evidence to support this recommendation. We aimed to determine the association between number of steps per day and stepping rate with all-cause mortality. Methods In this meta-analysis, we identified studies investigating the effect of daily step count on all-cause mortality in adults (aged ≥18 years), via a previously published systematic review and expert knowledge of the field. We asked participating study investigators to process their participant-level data following a standardised protocol. The primary outcome was all-cause mortality collected from death certificates and country registries. We analysed the dose– response association of steps per day and stepping rate with all-cause mortality. We did Cox proportional hazards regression analyses using study-specific quartiles of steps per day and calculated hazard ratios (HRs) with inversevariance weighted random effects models. Findings We identified 15 studies, of which seven were published and eight were unpublished, with study start dates between 1999 and 2018. The total sample included 47 471 adults, among whom there were 3013 deaths (10·1 per 1000 participant-years) over a median follow-up of 7·1 years ([IQR 4·3–9·9]; total sum of follow-up across studies was 297 837 person-years). Quartile median steps per day were 3553 for quartile 1, 5801 for quartile 2, 7842 for quartile 3, and 10 901 for quartile 4. Compared with the lowest quartile, the adjusted HR for all-cause mortality was 0·60 (95% CI 0·51–0·71) for quartile 2, 0·55 (0·49–0·62) for quartile 3, and 0·47 (0·39–0·57) for quartile 4. Restricted cubic splines showed progressively decreasing risk of mortality among adults aged 60 years and older with increasing number of steps per day until 6000–8000 steps per day and among adults younger than 60 years until 8000–10000 steps per day. Adjusting for number of steps per day, comparing quartile 1 with quartile 4, the association between higher stepping rates and mortality was attenuated but remained significant for a peak of 30 min (HR 0·67 [95% CI 0·56–0·83]) and a peak of 60 min (0·67 [0·50–0·90]), but not significant for time (min per day) spent walking at 40 steps per min or faster (1·12 [0·96–1·32]) and 100 steps per min or faster (0·86 [0·58–1·28]). Interpretation Taking more steps per day was associated with a progressively lower risk of all-cause mortality, up to a level that varied by age. The findings from this meta-analysis can be used to inform step guidelines for public health promotion of physical activity

    Joint associations of accelerometer measured physical activity and sedentary time with all-cause mortality: a harmonised meta-analysis in more than 44 000 middle-aged and older individuals

    Get PDF
    Funder: National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care East MidlandsFunder: National Institute on AgingFunder: Stockholms Läns Landsting; FundRef: http://dx.doi.org/10.13039/501100004348Funder: Norwegian Directorate for Public HealthFunder: Centrum for Idrottsforskning; FundRef: http://dx.doi.org/10.13039/501100005350Funder: The Coca-Cola CompanyObjectives: To examine the joint associations of accelerometer-measured physical activity and sedentary time with all-cause mortality. Methods: We conducted a harmonised meta-analysis including nine prospective cohort studies from four countries. 44 370 men and women were followed for 4.0 to 14.5 years during which 3451 participants died (7.8% mortality rate). Associations between different combinations of moderate-to-vigorous intensity physical activity (MVPA) and sedentary time were analysed at study level using Cox proportional hazards regression analysis and summarised using random effects meta-analysis. Results: Across cohorts, the average time spent sedentary ranged from 8.5 hours/day to 10.5 hours/day and 8 min/day to 35 min/day for MVPA. Compared with the referent group (highest physical activity/lowest sedentary time), the risk of death increased with lower levels of MVPA and greater amounts of sedentary time. Among those in the highest third of MVPA, the risk of death was not statistically different from the referent for those in the middle (16%; 95% CI 0.87% to 1.54%) and highest (40%; 95% CI 0.87% to 2.26%) thirds of sedentary time. Those in the lowest third of MVPA had a greater risk of death in all combinations with sedentary time; 65% (95% CI 1.25% to 2.19%), 65% (95% CI 1.24% to 2.21%) and 263% (95% CI 1.93% to 3.57%), respectively. Conclusion: Higher sedentary time is associated with higher mortality in less active individuals when measured by accelerometry. About 30–40 min of MVPA per day attenuate the association between sedentary time and risk of death, which is lower than previous estimates from self-reported data

    The ABC130 barrel module prototyping programme for the ATLAS strip tracker

    Full text link
    For the Phase-II Upgrade of the ATLAS Detector, its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100 % silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-25) and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.Comment: 82 pages, 66 figure

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.Peer reviewe

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries(1,2). However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world(3) and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health(4,5). However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular riskchanged from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million-4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.Peer reviewe
    corecore