86 research outputs found

    Role of Gallium-67 scintigraphy in the evaluation of occult sepsis in the medical ICU

    Get PDF
    Patients in intensive care units (ICUs) frequently have multiple infections or persistent fever despite management. The aim of this study was to evaluate the diagnostic contribution of gallium-67 scintigraphy in ICU patients with suspected occult sepsis. One hundred and seventeen patients (> 18 years) who had undergone gallium-67 scintigraphy in the ICU of our medical center over a 3-year period were retrospectively reviewed and analyzed. Patients were categorized into Group 1 (n = 84), those with a known infectious source, but who still had persistent fever or sepsis despite antibiotic treatment or abscess drainage; or Group 2 (n = 33), those without an evident infectious source after clinical, physical, and imaging studies. Among the 117 patients, 19 (16.2%) had a new diagnosis. In Group 1, 12 patients (14%) had a new infection, including pneumonia (4 patients), bed sore infection (2 patients), pulmonary tuberculosis (2 patients), leg cellulitis (1 patient), psoas muscle abscess (1 patient), osteomyelitis (1 patient), and infective endocarditis (1 patient). In Group 2, seven patients (21.2%) had a new infectious source, including septic arthritis (3 patients), osteomyelitis (2 patients), neck abscess (1 patient), and cholecystitis (1 patient). Significant differences were not observed between patients with positive and negative findings on gallium-67 scintigraphy in characteristics, underlying diseases, laboratory data, and outcomes. Gallium-67 scintigraphy helped to detect new or additional infectious sites, particularly bone, joint, and soft tissues. However, differences in hospital stay and mortality were not observed between patients with positive and negative findings

    Heliospheric Transport of Neutron-Decay Protons

    Get PDF
    We report on new simulations of the transport of energetic protons originating from the decay of energetic neutrons produced in solar flares. Because the neutrons are fast-moving but insensitive to the solar wind magnetic field, the decay protons are produced over a wide region of space, and they should be detectable by current instruments over a broad range of longitudes for many hours after a sufficiently large gamma-ray flare. Spacecraft closer to the Sun are expected to see orders-of magnitude higher intensities than those at the Earth-Sun distance. The current solar cycle should present an excellent opportunity to observe neutron-decay protons with multiple spacecraft over different heliographic longitudes and distances from the Sun.Comment: 12 pages, 4 figures, to be published in special issue of Solar Physic

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Global Properties of Solar Flares

    Full text link

    Design of Single-Path Optical Pickup Head With Three Wavelengths Using Integrated Optical Unit

    No full text
    For the purpose of backward compatibility to the CD and DVD specifications, the optical pickup head (OPH) design with multiple laser wavelengths and numerical apertures (NAs) is necessary for the Blu-ray Disc (BD) system. By utilizing the features of an integrated optical unit (IOU) and a holographic optical element (HOE), this study presents a novel three-wavelength BD OPH configuration with compactness in a single optical path. There are two OPH designs with the astigmatic and knife-edge focusing detection methods applied to the IOU configurations in this paper, respectively. The simulation results are satisfactory and show the feasibility of the designs

    Structure-stability-activity relationship in covalently cross-linked N-carbamoyl D-amino acid amidohydrolase and N-acylamino acid racemase

    No full text
    N-Acylamino acid racemase (NAAAR) and N-carbamoyl-D-amino-acid amidohydrolase (D-NCAase) are important biocatalysts for producing enantiopure a-amino acids. NAAAR forms an octameric assembly and displays induced fit movements upon substrate binding, while D-NCAase is a tetramer that does not change conformation in the presence of a ligand. To investigate the effects of introducing potentially stabilizing S-S bridges in these different multimeric enzymes, cysteine residues predicted to form inter or intra-subunit disulfide bonds were introduced by site-directed mutagenesis. Inter-subunit S-S bonds were formed in two NAAAR variants (A68C-D72C and P60C-Y100C) and two D-NCAase variants (A302C and P295C-F304C). Intra-subunit S-S bonds were formed in two additional NAAAR variants (E149C-A182C and V265C). Crystal structures of NAAARs variants show limited deviations from the wild-type overall tertiary structure. An apo A68C-D72C subunit differs from the wild-type enzyme, in which it has an ordered lid loop, resembling ligand-bound NAAAR. The structures of A222C and A302C D-NCAases are nearly identical to the wild-type enzyme. All mutants with inter-subunit bridges had increases in thermostability. Compared with the wild-type enzyme, A68C-D72C NAAAR showed similar k(cat)/K-m ratios, whereas mutant D-NCAases demonstrated increased k(cat)/K-m ratios at high temperatures (A302C: 4.2-fold at 65 degrees C). Furthermore, molecular dynamic simulations reveal that A302C substantially sustains the fine-tuned catalytic site as temperature increases, achieving enhanced activity. (c) 2006 Elsevier Ltd. All rights reserved

    (Journal of Molecular Biology,359(3):741-753)Structure-stability-activity relationship in covalently cross-linked N-carbamoyl D-amino acid amidohydrolase and N-acylamino acid racemase

    No full text
    N-Acylamino acid racemase (NAAAR) and N-carbamoyl-D-amino-acid amidohydrolase (D-NCAase) are important biocatalysts for producing enantiopure a-amino acids. NAAAR forms an octameric assembly and displays induced fit movements upon substrate binding, while D-NCAase is a tetramer that does not change conformation in the presence of a ligand. To investigate the effects of introducing potentially stabilizing S-S bridges in these different multimeric enzymes, cysteine residues predicted to form inter or intra-subunit disulfide bonds were introduced by site-directed mutagenesis. Inter-subunit S-S bonds were formed in two NAAAR variants (A68C-D72C and P60C-Y100C) and two D-NCAase variants (A302C and P295C-F304C). Intra-subunit S-S bonds were formed in two additional NAAAR variants (E149C-A182C and V265C). Crystal structures of NAAARs variants show limited deviations from the wild-type overall tertiary structure. An apo A68C-D72C subunit differs from the wild-type enzyme, in which it has an ordered lid loop, resembling ligand-bound NAAAR. The structures of A222C and A302C D-NCAases are nearly identical to the wild-type enzyme. All mutants with inter-subunit bridges had increases in thermostability. Compared with the wild-type enzyme, A68C-D72C NAAAR showed similar k(cat)/K-m ratios, whereas mutant D-NCAases demonstrated increased k(cat)/K-m ratios at high temperatures (A302C: 4.2-fold at 65 degrees C). Furthermore, molecular dynamic simulations reveal that A302C substantially sustains the fine-tuned catalytic site as temperature increases, achieving enhanced activity. (c) 2006 Elsevier Ltd. All rights reserved
    corecore