50 research outputs found

    Integrating Biology and Access to Care in Addressing Breast Cancer Disparities: 25 Years’ Research Experience in the Carolina Breast Cancer Study

    Get PDF
    Purpose of Review: To review research on breast cancer mortality disparities, emphasizing research conducted in the Carolina Breast Cancer Study, with a focus on challenges and opportunities for integration of tumor biology and access characteristics across the cancer care continuum. Recent Findings: Black women experience higher mortality following breast cancer diagnosis, despite lower incidence compared to white women. Biological factors, such as stage at diagnosis and breast cancer subtypes, play a role in these disparities. Simultaneously, social, behavioral, environmental, and access to care factors are important. However, integrated studies of biology and access are challenging and it is uncommon to have both data types available in the same study population. The central emphasis of phase 3 of the Carolina Breast Cancer Study, initiated in 2008, was to collect rich data on biology (including germline and tumor genomics and pathology) and health care access in a diverse study population, with the long-term goal of defining intervention opportunities to reduce disparities across the cancer care continuum. Summary: Early and ongoing research from CBCS has identified important interactions between biology and access, leading to opportunities to build greater equity. However, sample size, population-specific relationships among variables, and complexities of treatment paths along the care continuum pose important research challenges. Interdisciplinary teams, including experts in novel data integration and causal inference, are needed to address gaps in our understanding of breast cancer disparities

    Light at night and the risk of breast cancer: Findings from the Sister study

    Get PDF
    Background: Light at night (LAN) may alter estrogen regulation through circadian disruption. High levels of outdoor LAN may increase breast cancer risk, but studies have largely not considered possible residual confounding from correlated environmental exposures. We evaluated the association between indoor and outdoor LAN and incident breast cancer. Methods: In 47,145 participants in the prospective Sister Study cohort living in the contiguous U.S., exposure to outdoor LAN was determined using satellite-measured residential data and indoor LAN was self-reported (light/TV on, light from outside the room, nightlight, no light). We used Cox proportional hazards models to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for the associations between outdoor and indoor LAN and breast cancer risk. Models were adjusted for age, race/ethnicity, educational attainment, annual household income, neighborhood disadvantage, latitude, and population density as a proxy for urbanicity. To evaluate the potential for residual confounding of the outdoor LAN and breast cancer relationship by factors associated with urbanicity, we considered further adjustment for exposures correlated with outdoor LAN including NO2 [Spearman correlation coefficient, rho (ρ) = 0.78], PM2.5 (ρ = 0.36), green space (ρ = − 0.41), and noise (ρ = 0.81). Results: During 11 years of follow-up, 3,734 breast cancer cases were identified. Outdoor LAN was modestly, but non-monotonically, associated with a higher risk of breast cancer (Quintile 4 vs 1: HR = 1.10, 95% CI: 0.99–1.22; Quintile 5 vs 1: HR = 1.04, 95% CI: 0.93–1.16); however, no association was evident after adjustment for correlated ambient exposures (Quintile 4 vs 1: HR = 0.99, 95% CI: 0.86–1.14; Quintile 5 vs 1: HR = 0.89, 95% CI: 0.74–1.06). Compared to those with no indoor LAN exposure, sleeping with a light or TV on was associated with a HR = 1.09 (95% CI: 0.97–1.23) in the adjusted model. Conclusions: Outdoor LAN does not appear to increase the risk of breast cancer after adjustment for correlated environmental exposures

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Structures of the dehydrogenation products of methane activation by 5d transition metal cations

    No full text
    The activation of methane by gas-phase transition metal cations (M +) has been studied extensively, both experimentally and using density functional theory (DFT). Methane is exothermically dehydrogenated by several 5d metal ions to form [M,C,2H]+ and H2. However, the structure of the dehydrogenation product has not been established unambiguously. Two types of structures have been considered: a carbene structure where an intact CH2 fragment is bound to the metal (M +-CH2) and a carbyne (hydrido-methylidyne) structure with both a CH and a hydrogen bound to the metal separately (H-M+-CH). For metal ions with empty d-orbitals, an agostic interaction can occur that could influence the competition between carbene and carbyne structures. In this work, the gas phase [M,C,2H]+ (M = Ta, W, Ir, Pt) products are investigated by infrared multiple-photon dissociation (IR-MPD) spectroscopy using the Free-Electron Laser for IntraCavity Experiments (FELICE). Metal cations are formed in a laser ablation source and react with methane pulsed into a reaction channel downstream. IR-MPD spectra of the [M,C,2H]+ species are measured in the 300-3500 cm-1 spectral range by monitoring the loss of H (2H in the case of [Ir,C,2H]+). For each system, the experimental spectrum closely resembles the calculated spectrum of the lowest energy structure calculated using DFT: for Pt, a classic C2v carbene structure; for Ta and W, carbene structures that are distorted by agostic interactions; and a carbyne structure for the Ir complex. The Ir carbyne structure was not considered previously. To obtain this agreement, the calculated harmonic frequencies are scaled with a scaling factor of 0.939, which is fairly low and can be attributed to the strong redshift induced by the IR multiple-photon excitation process of these small molecules. These four-atomic species are among the smallest systems studied by IR-FEL based IR-MPD spectroscopy, and their spectra demonstrate the power of IR spectroscopy in resolving long-standing chemical questions. © 2013 American Chemical Society

    A Privacy Risk Model for Trajectory Data

    No full text
    Part 2: Full PapersInternational audienceTime sequence data relating to users, such as medical histories and mobility data, are good candidates for data mining, but often contain highly sensitive information. Different methods in privacy-preserving data publishing are utilised to release such private data so that individual records in the released data cannot be re-linked to specific users with a high degree of certainty. These methods provide theoretical worst-case privacy risks as measures of the privacy protection that they offer. However, often with many real-world data the worst-case scenario is too pessimistic and does not provide a realistic view of the privacy risks: the real probability of re-identification is often much lower than the theoretical worst-case risk. In this paper we propose a novel empirical risk model for privacy which, in relation to the cost of privacy attacks, demonstrates better the practical risks associated with a privacy preserving data release. We show detailed evaluation of the proposed risk model by using k-anonymised real-world mobility data
    corecore