49 research outputs found

    Courts Caught in the Web: Fixing a Failed System with Factors Designed for Sentencing Child Pornography Offenders

    Get PDF
    This Article introduces a Study, compiling data of 238 internet crimes against children occurring between 2008-2012, and concludes there is no correlation between presentence risk assessment scores and the subsequent sentences imposed by Northeast Ohio judges. The current risk assessment tools are insufficient and should be replaced by a comprehensive multi-factor approach that assesses relevant factors and identifies an offender’s placement on the “Spiral of Abuse” to aid Northeast Ohio judges in crafting fair, just, and consistent sentences for CPOs

    Courts Caught in the Web: Fixing a Failed System with Factors Designed for Sentencing Child Pornography Offenders

    Get PDF
    This Article introduces a Study, compiling data of 238 internet crimes against children occurring between 2008-2012, and concludes there is no correlation between presentence risk assessment scores and the subsequent sentences imposed by Northeast Ohio judges. The current risk assessment tools are insufficient and should be replaced by a comprehensive multi-factor approach that assesses relevant factors and identifies an offender’s placement on the “Spiral of Abuse” to aid Northeast Ohio judges in crafting fair, just, and consistent sentences for CPOs

    Effects of alternating current voltage amplitude and oxide capacitance on mid-gap interface state defect density extractions in In0.53Ga 0.47As capacitors

    Get PDF
    This work looks at the effect on mid-gap interface state defect density estimates for In0.53Ga0.47As semiconductor capacitors when different AC voltage amplitudes are selected for a fixed voltage bias step size (100 mV) during room temperature only electrical characterization. Results are presented for Au/Ni/Al2O3/In0.53Ga0.47As/InP metal–oxide–semiconductor capacitors with (1) n-type and p-type semiconductors, (2) different Al2O3 thicknesses, (3) different In0.53Ga0.47As surface passivation concentrations of ammonium sulphide, and (4) different transfer times to the atomic layer deposition chamber after passivation treatment on the semiconductor surface—thereby demonstrating a cross-section of device characteristics. The authors set out to determine the importance of the AC voltage amplitude selection on the interface state defect density extractions and whether this selection has a combined effect with the oxide capacitance. These capacitors are prototypical of the type of gate oxide material stacks that could form equivalent metal–oxide–semiconductor field-effect transistors beyond the 32 nm technology node. The authors do not attempt to achieve the best scaled equivalent oxide thickness in this work, as our focus is on accurately extracting device properties that will allow the investigation and reduction of interface state defect densities at the high-k/III–V semiconductor interface. The operating voltage for future devices will be reduced, potentially leading to an associated reduction in the AC voltage amplitude, which will force a decrease in the signal-to-noise ratio of electrical responses and could therefore result in less accurate impedance measurements. A concern thus arises regarding the accuracy of the electrical property extractions using such impedance measurements for future devices, particularly in relation to the mid-gap interface state defect density estimated from the conductance method and from the combined high–low frequency capacitance–voltage method. The authors apply a fixed voltage step of 100 mV for all voltage sweep measurements at each AC frequency. Each of these measurements is repeated 15 times for the equidistant AC voltage amplitudes between 10 mV and 150 mV. This provides the desired AC voltage amplitude to step size ratios from 1:10 to 3:2. Our results indicate that, although the selection of the oxide capacitance is important both to the success and accuracy of the extraction method, the mid-gap interface state defect density extractions are not overly sensitive to the AC voltage amplitude employed regardless of what oxide capacitance is used in the extractions, particularly in the range from 50% below the voltage sweep step size to 50% above it. Therefore, the use of larger AC voltage amplitudes in this range to achieve a better signal-to-noise ratio during impedance measurements for future low operating voltage devices will not distort the extracted interface state defect density

    The Concept of Trust and the Political Economy of John Maynard Keynes, Illustrated Using Central Bank Forward Guidance and the Democratic Dilemma in Europe

    Get PDF
    Trust is an issue to which Keynesians and post-Keynesians have paid relatively little attention. However, properly understood it is an aspect of almost all activity, including key elements of socio-economic reality. Without trust, market exchange is at the very least problematic, if not impossible. Moreover, trust is intrinsic to a variety of issues with which Keynes, and subsequent Keynesianism have been concerned. In this paper we provide a general social theory conceptualisation of trust and then set out some of the areas where this concept resonates with the work of Keynes in terms of the role of conventions. Conventions quintessentially involve trust and that trust can be unstable, can be withdrawn and can require rebuilding. We illustrate this with reference to central bank policy and the Bank of England's introduction of Forward Guidance. Exploring the problem of trust in the context of banking also highlights a challenge for the continued relevance of Keynes' work. We now live in a neoliberal world and this provides a quite different context for state intervention than was previously the case. Keynes' work is now an argument for the alternative, and as such it requires more than a technical economic argument, it must also address the problem of trust in state policy-makers. We briefly illustrate the challenge this poses with reference to Europe

    Solvent and thermal stability, and pH kinetics, of proline-specific dipeptidyl peptidase IV-like enzyme from bovine serum

    Get PDF
    Proline-specific dipeptidyl peptidase-like (DPP IV; EC 3.4.14.5) activity in bovine serum has attracted little attention despite its ready availability and the paucity of useful proline-cleaving enzymes. Bovine serum DPP IV-like peptidase is very tolerant of organic solvents, particularly acetonitrile: upon incubation for 1 h at room temperature in 70% acetonitrile, 47% dimethylformamide, 54% DMSO and 33% tetrahydrofuran (v/v concentrations) followed by dilution into the standard assay mixture, the enzyme retained half of its aqueous activity. As for thermal performance in aqueous buffer, its relative activity increased up to 50 ◦C. Upon thermoinactivation at 71 ◦C, pH 8.0 (samples removed periodically, cooled on ice, then assayed under optimal conditions), residual activities over short times fit a first-order decay with a k-value of 0.071±0.0034 min−1. Over longer times, residual activities fit to a double exponential decay with k1 and k2 values of 0.218±0.025 min−1 (46±4% of overall decay) and 0.040±0.002 min−1 (54±4% of overall decay), respectively. The enzyme’s solvent and thermal tolerances suggest that it may have potential for use as a biocatalyst in industry. Kinetic analysis with the fluorogenic substrate Gly-Pro-7-aminomethylcoumarin over a range of pH values indicated two pK values at 6.18±0.07 and at 9.70±0.50. We ascribe the lower value to the active site histidine; the higher may be due to the active site serine or to a free amino group in the substrate

    ALMA 0.88 mm Survey of Disks around Planetary-Mass Companions

    Get PDF
    Characterizing the physical properties and compositions of circumplanetary disks can provide important insights into the formation of giant planets and satellites. We report Atacama Large Millimeter/submillimeter Array 0.88 mm (Band 7) continuum observations of six planetary-mass (10–20 M Jup) companions: CT Cha b, 1RXS 1609 b, ROXs 12 b, ROXs 42B b, DH Tau b, and FU Tau b. No continuum sources are detected at the locations of the companions down to 3σ limits of 120–210 μJy. Given these nondetections, it is not clear whether disks around planetary-mass companions indeed follow the disk-flux–host-mass trend in the stellar regime. The faint radio brightness of these companion disks may result from a combination of fast radial drift and a lack of dust traps. Alternatively, as disks in binary systems are known to have significantly lower millimeter fluxes due to tidal interactions, these companion disks may instead follow the relationship of moderate-separation binary stars. This scenario can be tested with sensitive continuum imaging at rms levels of 10 μJy

    Engineering the interface chemistry for scandium electron contacts in WSe2 transistors and diodes

    Get PDF
    Sc has been employed as an electron contact to a number of two-dimensional (2D) materials (e.g. MoS2, black phosphorous) and has enabled, at times, the lowest electron contact resistance. However, the extremely reactive nature of Sc leads to stringent processing requirements and metastable device performance with no true understanding of how to achieve consistent, high-performance Sc contacts. In this work, WSe2 transistors with impressive subthreshold slope (109 mV dec−1) and I ON/I OFF (106) are demonstrated without post-metallization processing by depositing Sc contacts in ultra-high vacuum (UHV) at room temperature (RT). The lowest electron Schottky barrier height (SBH) is achieved by mildly oxidizing the WSe2 in situ before metallization, which minimizes subsequent reactions between Sc and WSe2. Post metallization anneals in reducing environments (UHV, forming gas) degrade the I ON/I OFF by ~103 and increase the subthreshold slope by a factor of 10. X-ray photoelectron spectroscopy indicates the anneals increase the electron SBH by 0.4–0.5 eV and correspondingly convert 100% of the deposited Sc contacts to intermetallic or scandium oxide. Raman spectroscopy and scanning transmission electron microscopy highlight the highly exothermic reactions between Sc and WSe2, which consume at least one layer RT and at least three layers after the 400 °C anneals. The observed layer consumption necessitates multiple sacrificial WSe2 layers during fabrication. Scanning tunneling microscopy/spectroscopy elucidate the enhanced local density of states below the WSe2 Fermi level around individual Sc atoms in the WSe2 lattice, which directly connects the scandium selenide intermetallic with the unexpectedly large electron SBH. The interface chemistry and structural properties are correlated with Sc–WSe2 transistor and diode performance. The recommended combination of processing conditions and steps is provided to facilitate consistent Sc contacts to WSe2

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29
    corecore