154 research outputs found

    Own-Synthetize Nanoparticles to Develop Nano-Enhanced Phase Change Materials (NEPCM) to Improve the Energy Efficiency in Buildings

    Get PDF
    The use of adequate thermal energy storage (TES) systems is an opportunity to increase energy efficiency in the building sector, and so decrease both commercial and residential energy consumptions. Nano-enhanced phase change materials (NEPCM) have attracted attention to address one of the crucial barriers (i.e. low thermal conductivity) to the adoption of phase change materials (PCM) in this sector. In the present study two PCM based on fatty acids, capric and palmitic acid, were nano-enhanced with low contents (1.0 wt.%, 1.5 wt.% and 3.0 wt.%) of copper (II) oxide (CuO) nanoparticles. Copper (II) oxide (CuO) was synthesized via coprecipitation method obtaining 60⁻120 nm diameter sized nanoparticles. Thermal stability and high thermal conductivity were observed for the nano-enhanced phase change materials (NEPCM) obtained. Experimental results revealed remarkable increments in NEPCM thermal conductivity, for instance palmitic acid thermal conductivity was increased up to 60% with the addition of 3 wt.% CuO nanoparticles. Moreover, CuO nanoparticles sedimentation velocity decreases when increasing its content

    MASked-unconTrolled hypERtension management based on office BP or on ambulatory blood pressure measurement (MASTER) Study: a randomised controlled trial protocol.

    Get PDF
    Masked uncontrolled hypertension (MUCH) carries an increased risk of cardiovascular (CV) complications and can be identified through combined use of office (O) and ambulatory (A) blood pressure (BP) monitoring (M) in treated patients. However, it is still debated whether the information carried by ABPM should be considered for MUCH management. Aim of the MASked-unconTrolled hypERtension management based on OBP or on ambulatory blood pressure measurement (MASTER) Study is to assess the impact on outcome of MUCH management based on OBPM or ABPM

    MASked-unconTrolled hypERtension management based on office BP or on ambulatory blood pressure measurement (MASTER) Study: a randomised controlled trial protocol

    Get PDF
    INTRODUCTION: Masked uncontrolled hypertension (MUCH) carries an increased risk of cardiovascular (CV) complications and can be identified through combined use of office (O) and ambulatory (A) blood pressure (BP) monitoring (M) in treated patients. However, it is still debated whether the information carried by ABPM should be considered for MUCH management. Aim of the MASked-unconTrolled hypERtension management based on OBP or on ambulatory blood pressure measurement (MASTER) Study is to assess the impact on outcome of MUCH management based on OBPM or ABPM. METHODS AND ANALYSIS: MASTER is a 4-year prospective, randomised, open-label, blinded-endpoint investigation. A total of 1240 treated hypertensive patients from about 40 secondary care clinical centres worldwide will be included -upon confirming presence of MUCH (repeated on treatment OBP <140/90 mm Hg, and at least one of the following: daytime ABP ≥135/85 mm Hg; night-time ABP ≥120/70 mm Hg; 24 hour ABP ≥130/80 mm Hg), and will be randomised to a management strategy based on OBPM (group 1) or on ABPM (group 2). Patients in group 1 will have OBP measured at 0, 3, 6, 12, 18, 24, 30, 36, 42 and 48 months and taken as a guide for treatment; ABPM will be performed at randomisation and at 12, 24, 36 and 48 months but will not be used to take treatment decisions. Patients randomised to group 2 will have ABPM performed at randomisation and all scheduled visits as a guide to antihypertensive treatment. The effects of MUCH management strategy based on ABPM or on OBPM on CV and renal intermediate outcomes (changing left ventricular mass and microalbuminuria, coprimary outcomes) at 1 year and on CV events at 4 years and on changes in BP-related variables will be assessed. ETHICS AND DISSEMINATION: MASTER study protocol has received approval by the ethical review board of Istituto Auxologico Italiano. The procedures set out in this protocol are in accordance with principles of Declaration of Helsinki and Good Clinical Practice guidelines. Results will be published in accordance with the CONSORT statement in a peer-reviewed scientific journal. TRIAL REGISTRATION NUMBER: NCT02804074; Pre-results

    Sustained seizure freedom with adjunctive brivaracetam in patients with focal onset seizures

    Get PDF
    The maintenance of seizure control over time is a clinical priority in patients with epilepsy. The aim of this study was to assess the sustained seizure frequency reduction with adjunctive brivaracetam (BRV) in real-world practice. Patients with focal epilepsy prescribed add-on BRV were identified. Study outcomes included sustained seizure freedom and sustained seizure response, defined as a 100% and a ≥50% reduction in baseline seizure frequency that continued without interruption and without BRV withdrawal through the 12-month follow-up. Nine hundred ninety-four patients with a median age of 45 (interquartile range = 32–56) years were included. During the 1-year study period, sustained seizure freedom was achieved by 142 (14.3%) patients, of whom 72 (50.7%) were seizure-free from Day 1 of BRV treatment. Sustained seizure freedom was maintained for ≥6, ≥9, and 12&nbsp;months by 14.3%, 11.9%, and 7.2% of patients from the study cohort. Sustained seizure response was reached by 383 (38.5%) patients; 236 of 383 (61.6%) achieved sustained ≥50% reduction in seizure frequency by Day 1, 94 of 383 (24.5%) by Month 4, and 53 of 383 (13.8%) by Month 7 up to Month 12. Adjunctive BRV was associated with sustained seizure frequency reduction from the first day of treatment in a subset of patients with uncontrolled focal epilepsy

    Adjunctive Brivaracetam in Focal Epilepsy: Real-World Evidence from the BRIVAracetam add-on First Italian netwoRk STudy (BRIVAFIRST)

    Get PDF
    Background: In randomized controlled trials, add-on brivaracetam (BRV) reduced seizure frequency in patients with drug-resistant focal epilepsy. Studies performed in a naturalistic setting are a useful complement to characterize the drug profile. Objective: This multicentre study assessed the effectiveness and tolerability of adjunctive BRV in a large population of patients with focal epilepsy in the context of real-world clinical practice. Methods: The BRIVAFIRST (BRIVAracetam add-on First Italian netwoRk STudy) was a retrospective, multicentre study including adult patients prescribed adjunctive BRV. Patients with focal epilepsy and 12-month follow-up were considered. Main outcomes included the rates of seizure‐freedom, seizure response (≥&nbsp;50% reduction in baseline seizure frequency), and treatment discontinuation. The incidence of adverse events (AEs) was also considered. Analyses by levetiracetam (LEV) status and concomitant use of strong enzyme-inducing antiseizure medications (EiASMs) and sodium channel blockers (SCBs) were performed. Results: A total of 1029 patients with a median age of 45&nbsp;years (33–56) was included. At 12 months, 169 (16.4%) patients were seizure-free and 383 (37.2%) were seizure responders. The rate of seizure freedom was 22.3% in LEV-naive patients, 7.1% in patients with prior LEV use and discontinuation due to insufficient efficacy, and 31.2% in patients with prior LEV use and discontinuation due to AEs (p&nbsp;&lt;&nbsp;0.001); the corresponding values for ≥&nbsp;50% seizure frequency reduction were 47.9%, 29.7%, and 42.8% (p&nbsp;&lt;&nbsp;0.001). There were no statistically significant differences in seizure freedom and seizure response rates by use of strong EiASMs. The rates of seizure freedom (20.0% vs. 16.6%; p&nbsp;=&nbsp;0.341) and seizure response (39.7% vs. 26.9%; p&nbsp;=&nbsp;0.006) were higher in patients receiving SCBs than those not receiving SCBs; 265 (25.8%) patients discontinued BRV. AEs were reported by 30.1% of patients, and were less common in patients treated with BRV and concomitant SCBs than those not treated with SCBs (28.9% vs. 39.8%; p&nbsp;=&nbsp;0.017). Conclusion: The BRIVAFIRST provided real-world evidence on the effectiveness of BRV in patients with focal epilepsy irrespective of LEV history and concomitant ASMs, and suggested favourable therapeutic combinations

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices

    Full text link
    corecore