4,242 research outputs found

    Superconductivity in the Kondo lattice model

    Full text link
    We study the Kondo lattice model with additional attractive interaction between the conduction electrons within the dynamical mean-field theory using the numerical renormalization group to solve the effective quantum impurity problem. In addition to normal-state and magnetic phases we also allow for the occurrence of a superconducting phase. In the normal phase we observe a very sensitive dependence of the low-energy scale on the conduction-electron interaction. We discuss the dependence of the superconducting transition on the interplay between attractive interaction and Kondo exchange.Comment: Submitted to ICM 2009 Conference Proceeding

    Simulation of Stratospheric Water Vapor Trends: Impact on Stratospheric Ozone Chemistry

    Get PDF
    A transient model simulation of the 40-year time period 1960 to 1999 with the coupled climate-chemistry model (CCM) ECHAM4.L39(DLR)/CHEM shows a stratospheric water vapor increase over the last two decades of 0.7 ppmv and, additionally, a short-term increase after major volcanic eruptions. Furthermore, a long-term decrease in global total ozone as well as a short-term ozone decline in the tropics after volcanic eruptions are modeled. In order to understand the resulting effects of the water vapor changes on lower stratospheric ozone chemistry, different perturbation simulations were performed with the CCM ECHAM4.L39- (DLR)/CHEM feeding the water vapor perturbations only to the chemistry part. Two different long-term perturbations of lower stratospheric water vapor, +1 ppmv and +5 ppmv, and a short-term perturbation of +2 ppmv with an e-folding time of two months were applied. An additional stratospheric water vapor amount of 1 ppmv results in a 5–10% OH increase in the tropical lower stratosphere between 100 and 30 hPa. As a direct consequence of the OH increase the ozone destruction by the HOx cycle becomes 6.4% more effective. Coupling processes between the HOx-family and the NOx/ClOxfamily also affect the ozone destruction by other catalytic reaction cycles. The NOx cycle becomes 1.6% less effective, whereas the effectiveness of the ClOx cycle is again slightly enhanced. A long-term water vapor increase does not only affect gas-phase chemistry, but also heterogeneous ozone chemistry in polar regions. The model results indicate an enhanced heterogeneous ozone depletion during antarctic spring due to a longer PSC existence period. In contrast, PSC formation in the northern hemisphere polar vortex and therefore heterogeneous ozone depletion during arctic spring are not affected by the water vapor increase, because of the less PSC activity. Finally, this study shows that 10% of the global total ozone decline in the transient model run can be explained by the modeled water vapor increase, but the simulated tropical ozone decrease after volcanic eruptions is caused dynamically rather than chemically

    Automated Model Selection with AMSFin a production process of the automotive industry

    Get PDF
    Machine learning, statistics and knowledge engineering provide a broad variety of supervised learning algorithms for classification. In this paper we introduce the Automated Model Selection Framework (AMSF) which presents automatic and semi-automatic methods to select classifiers. To achieve this we split up the selection process into three distinct phases. Two of those select algorithms by static rules which are derived from a manually created knowledgebase. At this stage of AMSF the user can choose between different rankers in the third phase. Currently, we use instance based learning and a scoring scheme for ranking the classifiers. After evaluation of different rankers we will recommend the most successful to the user by default. Besides describing the architecture and design issues, we additionally point out the versatile ways AMSF is applied in a production process of the automotive industr

    Charge gaps and quasiparticle bands of the ionic Hubbard model

    Full text link
    The ionic Hubbard model on a cubic lattice is investigated using analytical approximations and Wilson's renormalization group for the charge excitation spectrum. Near the Mott insulating regime, where the Hubbard repulsion starts to dominate all energies, the formation of correlated bands is described. The corresponding partial spectral weights and local densities of states show characteristic features, which compare well with a hybridized-band picture appropriate for the regime at small UU, which at half-filling is known as a band insulator. In particular, a narrow charge gap is obtained at half-filling, and the distribution of spectral quasi-particle weight reflects the fundamental hybridization mechanism of the model

    Permanent generic relatedness and silent change

    Get PDF
    Given the assertion of a relation between two types, like: “Epidermis has part some Keratinocyte”, we define silent change as any kind of change of the instance-relata of the relation in question that does not change the truth-value of the respective type-level assertion. Such assertions are notoriously difficult to model in OWL 2. To address this problem, we distinguish different modes of type-level relatedness giving rise to this problem and describe a conservative extension to the BFO top-level ontology that allows expressing these modes

    Self-consistent Treatment of Crystal-Electric-Field-Levels in the Anderson Lattice

    Full text link
    We consider an Anderson lattice model with a spin 1/2 degenerated conduction electron band and localized ionic CEF-levels, classified according to the irreducible representation of the point group of the lattice. We present the self-consistency equations for local approximations ("d"d\rightarrow\infty" approximation) for the periodic Anderson model. It leads to a matrix formulation of the effective local density of states and the lattice ff-Green's function. We derive the quasi-particle life-time which enters the Boltzmann transport equations. The impact of a kk-dependent hybridization is discussed. We prove that vertex corrections will vanish, as long as all states of an irreducible representation couple to the conduction electron band with a hybridization matrix element of the same parity.Comment: 3 pages, REVTeX type, proceedings of SCES96 Z\"uric

    A Fermi Sea of Heavy Electrons (a Kondo Lattice) is Never a Fermi Liquid

    Full text link
    I demonstrate a contradiction which arises if we assume that the Fermi surface in a heavy electron metal represents a finite jump in occupancy
    corecore