1,308 research outputs found

    Erythropoietin reduces neuronal cell death and hyperalgesia induced by peripheral inflammatory pain in neonatal rats

    Get PDF
    Painful stimuli during neonatal stage may affect brain development and contribute to abnormal behaviors in adulthood. Very few specific therapies are available for this developmental disorder. A better understanding of the mechanisms and consequences of painful stimuli during the neonatal period is essential for the development of effective therapies. In this study, we examined brain reactions in a neonatal rat model of peripheral inflammatory pain. We focused on the inflammatory insult-induced brain responses and delayed changes in behavior and pain sensation. Postnatal day 3 pups received formalin injections into the paws once a day for 3 days. The insult induced dysregulation of several inflammatory factors in the brain and caused selective neuronal cell death in the cortex, hippocampus and hypothalamus. On postnatal day 21, rats that received the inflammatory nociceptive insult exhibited increased local cerebral blood flow in the somatosensory cortex, hyperalgesia, and decreased exploratory behaviors. Based on these observations, we tested recombinant human erythropoietin (rhEPO) as a potential treatment to prevent the inflammatory pain-induced changes. rhEPO treatment (5,000 U/kg/day, i.p.), coupled to formalin injections, ameliorated neuronal cell death and normalized the inflammatory response. Rats that received formalin plus rhEPO exhibited normal levels of cerebral blood flow, pain sensitivity and exploratory behavior. Treatment with rhEPO also restored normal brain and body weights that were reduced in the formalin group. These data suggest that severe inflammatory pain has adverse effects on brain development and rhEPO may be a possible therapy for the prevention and treatment of this developmental disorder

    Acute myocardial infarction activates distinct inflammation and proliferation pathways in circulating monocytes, prior to recruitment, and identified through conserved transcriptional responses in mice and humans

    Get PDF
    Aims Monocytes play critical roles in tissue injury and repair following acute myocardial infarction (AMI). Specifically targeting inflammatory monocytes in experimental models leads to reduced infarct size and improved healing. However, data from humans are sparse, and it remains unclear whether monocytes play an equally important role in humans. The aim of this study was to investigate whether the monocyte response following AMI is conserved between humans and mice and interrogate patterns of gene expression to identify regulated functions. Methods and results Thirty patients (AMI) and 24 control patients (stable coronary atherosclerosis) were enrolled. Female C57BL/6J mice (n = 6/group) underwent AMI by surgical coronary ligation. Myocardial injury was quantified by magnetic resonance imaging (human) and echocardiography (mice). Peripheral monocytes were isolated at presentation and at 48 h. RNA from separated monocytes was hybridized to Illumina beadchips. Acute myocardial infarction resulted in a significant peripheral monocytosis in both species that positively correlated with the extent of myocardial injury. Analysis of the monocyte transcriptome following AMI demonstrated significant conservation and identified inflammation and mitosis as central processes to this response. These findings were validated in both species. Conclusions Our findings show that the monocyte transcriptome is conserved between mice and humans following AMI. Patterns of gene expression associated with inflammation and proliferation appear to be switched on prior to their infiltration of injured myocardium suggesting that the specific targeting of inflammatory and proliferative processes in these immune cells in humans are possible therapeutic strategies. Importantly, they could be effective in the hours after AMI

    Massive Peatland Carbon Banks Vulnerable to Rising Temperatures

    Get PDF
    Peatlands contain one-third of the world’s soil carbon (C). If destabilized, decomposition of this vast C bank could accelerate climate warming; however, the likelihood of this outcome remains unknown. Here, we examine peatland C stability through five years of whole-ecosystem warming and two years of elevated atmospheric carbon dioxide concentrations (eCO2). Warming exponentially increased methane (CH4) emissions and enhanced CH4 production rates throughout the entire soil profile; although surface CH4 production rates remain much greater than those at depth. Additionally, older deeper C sources played a larger role in decomposition following prolonged warming. Most troubling, decreases in CO2:CH4 ratios in gas production, porewater concentrations, and emissions, indicate that the peatland is becoming more methanogenic with warming. We observed limited evidence of eCO2 effects. Our results suggest that ecosystem responses are largely driven by surface peat, but that the vast C bank at depth in peatlands is responsive to prolonged warming

    Neuropeptide-Y causes coronary microvascular constriction and is associated with reduced ejection fraction following ST-elevation myocardial infarction

    Get PDF
    Aims: The co-transmitter neuropeptide-Y (NPY) is released during high sympathetic drive, including ST-elevation myocardial infarction (STEMI), and can be a potent vasoconstrictor. We hypothesized that myocardial NPY levels correlate with reperfusion and subsequent recovery following primary percutaneous coronary intervention (PPCI), and sought to determine if and how NPY constricts the coronary microvasculature. Methods and results: Peripheral venous NPY levels were significantly higher in patients with STEMI (n = 45) compared to acute coronary syndromes/stable angina ( n = 48) or with normal coronary arteries (NC, n = 16). Overall coronary sinus (CS) and peripheral venous NPY levels were significantly positively correlated (r = 0.79). STEMI patients with the highest CS NPY levels had significantly lower coronary flow reserve, and higher index of microvascular resistance measured with a coronary flow wire. After 2 days they also had significantly higher levels of myocardial oedema and microvascular obstruction on cardiac magnetic resonance imaging, and significantly lower ejection fractions and ventricular dilatation 6 months later. NPY (100–250 nM) caused significant vasoconstriction of rat microvascular coronary arteries via increasing vascular smooth muscle calcium waves, and also significantly increased coronary vascular resistance and infarct size in Langendorff hearts. These effects were blocked by the Y1 receptor antagonist BIBO3304 (1 μM). Immunohistochemistry of the human coronary microvasculature demonstrated the presence of vascular smooth muscle Y1 receptors. Conclusion: High CS NPY levels immediately after reperfusion correlate with microvascular dysfunction, greater myocardial injury, and reduced ejection fraction 6 months after STEMI. NPY constricts the coronary microcirculation via the Y1 receptor, and antagonists may be a useful PPCI adjunct therapy

    Search for Kaluza-Klein Graviton Emission in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy Signature

    Get PDF
    We report on a search for direct Kaluza-Klein graviton production in a data sample of 84 pb1{pb}^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and one or two high energy jets. We compare the data with the predictions from a 3+1+n3+1+n-dimensional Kaluza-Klein scenario in which gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for nn=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71 TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure

    Measurement of the average time-integrated mixing probability of b-flavored hadrons produced at the Tevatron

    Get PDF
    We have measured the number of like-sign (LS) and opposite-sign (OS) lepton pairs arising from double semileptonic decays of bb and bˉ\bar{b}-hadrons, pair-produced at the Fermilab Tevatron collider. The data samples were collected with the Collider Detector at Fermilab (CDF) during the 1992-1995 collider run by triggering on the existence of μμ\mu \mu and eμe \mu candidates in an event. The observed ratio of LS to OS dileptons leads to a measurement of the average time-integrated mixing probability of all produced bb-flavored hadrons which decay weakly, χˉ=0.152±0.007\bar{\chi} = 0.152 \pm 0.007 (stat.) ±0.011\pm 0.011 (syst.), that is significantly larger than the world average χˉ=0.118±0.005\bar{\chi} = 0.118 \pm 0.005.Comment: 47 pages, 10 figures, 15 tables Submitted to Phys. Rev.

    Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-

    Get PDF
    We report a measurement of time-integrated CP-violation asymmetries in the resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production flavor of the charm meson is determined by the charge of the accompanying pion. We apply a Dalitz-amplitude analysis for the description of the dynamic decay structure and use two complementary approaches, namely a full Dalitz-plot fit employing the isobar model for the contributing resonances and a model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57 (stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry, consistent with the standard model prediction.Comment: 15 page

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore