60 research outputs found

    Comparison of equipment used to measure shear properties in equine arena surfaces

    Get PDF
    The design of a novel apparatus, the Glen Withy torque tester (GWTT), for measuring horizontal shear properties in equine sport surfaces is described. Previous research has considered the effect of vertical loading on equine performance and injury but only limited discussion has concerned the grip or horizontal motion of the hoof. The horizontal support of the hoof by the surface must be sufficient to avoid excess slip without overloading the limb. The GWTT measures the torque necessary to twist an artificial hoof that is being pushed into the surface under a consistently applied vertical load. Its output was validated using a steel surface, then was used to test two sand and fibre surfaces (waxed and non-waxed) through rotations of 40–140°, and vertical loads of 157–1138 N. An Orono biomechanical surface tester (OBST) measured longitudinal shear and vertical force, whilst a traction tester measured rotational shear after being dropped onto the surfaces. A weak, but significant, linear relationship was found between rotational shear measured using the GWTT and longitudinal shear quantified using the OBST. However, only the GWTT was able to detect significant differences in shear resistance between the surfaces. Future work should continue to investigate the strain rate and non-linear load response of surfaces used in equestrian sports. Measurements should be closely tied to horse biomechanics and should include information on the maintenance condition and surface composition. Both the GWTT and the OBST are necessary to adequately characterise all the important functional properties of equine sport surfaces

    Contrasting long-term dynamics of antimicrobial resistance and virulence plasmids in Salmonella Typhimurium from animals

    Get PDF
    Plasmids are mobile elements that can carry genes encoding traits of clinical concern, including antimicrobial resistance (AMR) and virulence. Population-level studies of Enterobacterales, including Escherichia coli, Shigella and Klebsiella, indicate that plasmids are important drivers of lineage expansions and dissemination of AMR genes. Salmonella Typhimurium is the second most common cause of salmonellosis in humans and livestock in the UK and Europe. The long-term dynamics of plasmids between S. Typhimurium were investigated using isolates collected through national surveillance of animals in England and Wales over a 25-year period. The population structure of S. Typhimurium and its virulence plasmid (where present) were inferred through phylogenetic analyses using whole-genome sequence data for 496 isolates. Antimicrobial resistance genes and plasmid markers were detected in silico. Phenotypic plasmid characterization, using the Kado and Liu method, was used to confirm the number and size of plasmids. The differences in AMR and plasmids between clades were striking, with livestock clades more likely to carry one or more AMR plasmid and be multi-drug-resistant compared to clades associated with wildlife and companion animals. Multiple small non-AMR plasmids were distributed across clades. However, all hybrid AMR-virulence plasmids and most AMR plasmids were highly clade-associated and persisted over decades, with minimal evidence of horizontal transfer between clades. This contrasts with the role of plasmids in the short-term dissemination of AMR between diverse strains in other Enterobacterales in high-antimicrobial-use settings, with implications for predicting plasmid dissemination amongst S. Typhimurium

    Risk prediction of late-onset Alzheimer’s disease implies an oligogenic architecture

    Get PDF
    © 2020, The Author(s). Genetic association studies have identified 44 common genome-wide significant risk loci for late-onset Alzheimer’s disease (LOAD). However, LOAD genetic architecture and prediction are unclear. Here we estimate the optimal P-threshold (Poptimal) of a genetic risk score (GRS) for prediction of LOAD in three independent datasets comprising 676 cases and 35,675 family history proxy cases. We show that the discriminative ability of GRS in LOAD prediction is maximised when selecting a small number of SNPs. Both simulation results and direct estimation indicate that the number of causal common SNPs for LOAD may be less than 100, suggesting LOAD is more oligogenic than polygenic. The best GRS explains approximately 75% of SNP-heritability, and individuals in the top decile of GRS have ten-fold increased odds when compared to those in the bottom decile. In addition, 14 variants are identified that contribute to both LOAD risk and age at onset of LOAD

    The Space Infrared Interferometric Telescope (SPIRIT): High-resolution imaging and spectroscopy in the far-infrared

    Full text link
    We report results of a recently-completed pre-Formulation Phase study of SPIRIT, a candidate NASA Origins Probe mission. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 microns. SPIRIT will provide sub-arcsecond resolution images and spectra with resolution R = 3000 in a 1 arcmin field of view to accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks, and how they acquire their inhomogeneous composition; (2) characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different types form; and (3) learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. Observations with SPIRIT will be complementary to those of the James Webb Space Telescope and the ground-based Atacama Large Millimeter Array. All three observatories could be operational contemporaneously.Comment: 20 pages, 12 figures, accepted for publication in J. Adv. Space Res. on 26 May 200

    Suono e Spettacolo. Athanasius Kircher, un percorso nelle Immagini sonore.

    Get PDF
    The Society of Jesus made great propaganda efforts throughout the seventeenth century and chose the images and the play as a privileged means to communicate and persuade. Athanasius Kircher, a key figure of the seventeenth century, he decided to dominate the wild nature of sound through Phonurgia Nova, which includes a gallery of powerful symbolic images for Baroque aesthetics. The essay, through the grant of the images from the Library of the Department of Mathematics "Guido Castelnuovo" Sapienza University of Rome, aims to understand, through the pictures offered by Kircher, the sound phenomenon and the spectacle that this produces. In Phonurgia Nova a process of dramatization sound effects takes place, often through machines and "visions" applied to the theatrical reality, as experimental and astonishing environment beloved in baroque. Kircher illustrates the sound through explanatory figures, so to dominate the sound through the eyes. Sound is seen, admired and represented: its spectacle not only takes place through the implementation of sound machines or the "wonders" applied to the theater, but even through images, creating create a sense of wonder in in the erudite person of the seventeenth century

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Origins Space Telescope: baseline mission concept

    Get PDF
    The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid- and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20  μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250  μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588  μm, making wide-area and deep spectroscopic surveys with spectral resolving power R  ∼  300, and pointed observations at R  ∼  40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins’ natural background-limited sensitivity

    SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway

    Get PDF
    Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant
    corecore