1,551 research outputs found

    Quantum state tomography of dissociating molecules

    Full text link
    Using tomographic reconstruction we determine the complete internuclear quantum state, represented by the Wigner function, of a dissociating I2 molecule based on femtosecond time resolved position and momentum distributions of the atomic fragments. The experimental data are recorded by timed ionization of the photofragments with an intense 20 fs laser pulse. Our reconstruction method, which relies on Jaynes' maximum entropy principle, will also be applicable to time resolved position or momentum data obtained with other experimental techniques

    Debris Disks as Tracers of Nearby Planetary Systems

    Get PDF
    Many main-sequence stars possess tenuous circumstellar dust clouds believed to trace extrasolar analogs of the Sun's asteroid and Kuiper Belts. While most of these "debris disks" are known only from far-infrared photometry, dozens are now spatially resolved. In this talk, I'll review the observed structural properties of debris disks as revealed by imaging with the Hubble, Spitzer, and Herschel Space Telescopes. I will show how modeling of the far-infrared spectral energy distributions of resolved disks can be used to constrain their dust particle sizes and albedos. I will review cases of disks whose substructures suggest planetary perturbations, including a newly-discovered eccentric ring system. I'll conclude with thoughts on the potential of upcoming and proposed facilities to resolve similar structures around a greatly expanded sample of nearby debris systems

    Probing Nearby Planetary Systems by Debris Disk Imaging

    Get PDF
    Many main-sequence stars possess tenuous circumstellar dust clouds believed to trace extrasolar analogs of the Sun's asteroid and Kuiper Belts. While most of these "debris disks" are known only from far-infrared photometry, a growing number of them are now spatially resolved. In this contribution, I review recent imaging results on debris disk structures from the Hubble, Spitzer, and Herschel Space Telescopes. Specific cases of disk interactions with imaged and radial velocity exoplanets will be discussed. I will show how combined modeling of the optical and infrared datasets can place strong constraints on dust particle properties in the disks. Future developments in debris disk imaging will be discussed

    A Herschel-Resolved Debris Disk Around the Nearby G Star HIP 32480

    Get PDF
    The Herschel Space Observatory is providing unprecedented sensitivity and angular resolution in the far-infrared. The DUNES Key Project (DUst around NEarby Stars, PI Carlos Eiroa) has finished its survey of 133 FGK stars within 25 pc of the Sun using the PACS photometer at 100 and 160 microns. We report the detection of a resolved debris ring around HIP 32480, a G0 star 16.5 parsecs distant. The ring is almost 300 AU in diameter and inclined 30 degrees from edge-on. We present a thermal emission model for the system that fits the Spitzer spectroscopy and Herschel images of the system. We find a minimum grainsize of approximately 4 microns in the main ring and a distinct warm dust population interior to it. Faint detached emission features just outside the ring may trace a separate, more distant ring in the system. The non-detection of the ring in archival HST/ACS coronagraphic images limits the dust grain albedo in the ring to be no more than 10%
    corecore