2,242 research outputs found

    Genetic Land - Modeling land use change using evolutionary algorithms

    Get PDF
    Future land use configurations provide valuable knowledge for policy makers and economic agents, especially under expected environmental changes such as decreasing rainfall or increasing temperatures, or scenarios of policy guidance such as carbon sequestration enforcement. In this paper, modelling land use change is designed as an optimization problem in which landscapes (land uses) are generated through the use of genetic algorithms (GA), according to an objective function (e.g. minimization of soil erosion, or maximization of carbon sequestration), and a set of local restrictions (e.g. soil depth, water availability, or landscape structure). GAs are search and optimization procedures based on the mechanics of natural selection and genetics. The GA starts with a population of random individuals, each corresponding to a particular candidate solution to the problem. The best solutions are propagated; they are mated with each other and originate “offspring solutions” which randomly combine the characteristics of each “parent”. The repeated application of these operations leads to a dynamic system that emulates the evolutionary mechanisms that occur in nature. The fittest individuals survive and propagate their traits to future generations, while unfit individuals have a tendency to die and become extinct (Goldberg, 1989). Applications of GA to land use planning have been experimented (Brookes, 2001, Ducheyne et al, 2001). However, long-term planning with a time-span component has not yet been addressed. GeneticLand, the GA for land use generation, works on a region represented by a bi-dimensional array of cells. For each cell, there is a number of possible land uses (U1, U2, ..., Un). The task of the GA is to search for an optimal assignment of these land uses to the cells, evolving the landscape patterns that are most suitable for satisfying the objective function, for a certain time period (e.g. 50 years in the future). GeneticLand develops under a multi-objective function: (i) Minimization of soil erosion – each solution is validated by applying the USLE, with the best solution being the one that minimizes the landscape soil erosion value; (ii) Maximization of carbon sequestration – each solution is validated by applying atmospheric CO2 carbon uptake estimates, with the best solution being the one that maximizes the landscape carbon uptake; and (iii) Maximization of the landscape economic value – each solution is validated by applying an economic value (derived from expert judgment), with the best solution being the one that maximizes the landscape economic value. As an optimization problem, not all possible land use assignments are feasible. GeneticLand considers two sets of restrictions that must be met: (i) physical constraints (soil type suitability, slope, rainfall-evapotranspiration ratio, and a soil wetness index) and (ii) landscape ecology restrictions at several levels (minimum patch area, land use adjacency index and landscape contagion index). The former assures physical feasibility and the latter the spatial coherence of the landscape. The physical and landscape restrictions were derived from the analysis of past events based on a time series of Landsat images (1985-2003), in order to identify the drivers of land use change and structure. Since the problem has multiple objectives, the GA integrates multi-objective extensions allowing it to evolve a set of non-dominated solutions. An evolutive type algorithm – Evolutive strategy (1+1) – is used, due to the need to accommodate the very large solution space. Current applications have about 1000 decision variables, while the problem analysed by GeneticLand has almost 111000, generated by a landscape with 333*333 discrete pixels. GeneticLand is developed and validated for a Mediterranean type landscape located in southern Portugal. Future climate triggers, such as the increase of intense rainfall episodes, is accommodated to simulate climate change . This paper presents: (1) the formulation of land use modelling as an optimization problem; (2) the formulation of the GA for the explicit spatial domain, (3) the land use constraints derived for a Mediterranean landscape, (4) the results illustrating conflicting objectives, and (5) limitations encountered.

    Genetic Land - Modeling land use change using evolutionary algorithms

    Full text link
    Future land use configurations provide valuable knowledge for policy makers and economic agents, especially under expected environmental changes such as decreasing rainfall or increasing temperatures, or scenarios of policy guidance such as carbon sequestration enforcement. In this paper, modelling land use change is designed as an optimization problem in which landscapes (land uses) are generated through the use of genetic algorithms (GA), according to an objective function (e.g. minimization of soil erosion, or maximization of carbon sequestration), and a set of local restrictions (e.g. soil depth, water availability, or landscape structure). GAs are search and optimization procedures based on the mechanics of natural selection and genetics. The GA starts with a population of random individuals, each corresponding to a particular candidate solution to the problem. The best solutions are propagated; they are mated with each other and originate "offspring solutions” which randomly combine the characteristics of each "parent”. The repeated application of these operations leads to a dynamic system that emulates the evolutionary mechanisms that occur in nature. The fittest individuals survive and propagate their traits to future generations, while unfit individuals have a tendency to die and become extinct (Goldberg, 1989). Applications of GA to land use planning have been experimented (Brookes, 2001, Ducheyne et al, 2001). However, long-term planning with a time-span component has not yet been addressed. GeneticLand, the GA for land use generation, works on a region represented by a bi-dimensional array of cells. For each cell, there is a number of possible land uses (U1, U2, ..., Un). The task of the GA is to search for an optimal assignment of these land uses to the cells, evolving the landscape patterns that are most suitable for satisfying the objective function, for a certain time period (e.g. 50 years in the future). GeneticLand develops under a multi-objective function: (i) Minimization of soil erosion – each solution is validated by applying the USLE, with the best solution being the one that minimizes the landscape soil erosion value; (ii) Maximization of carbon sequestration – each solution is validated by applying atmospheric CO2 carbon uptake estimates, with the best solution being the one that maximizes the landscape carbon uptake; and (iii) Maximization of the landscape economic value – each solution is validated by applying an economic value (derived from expert judgment), with the best solution being the one that maximizes the landscape economic value. As an optimization problem, not all possible land use assignments are feasible. GeneticLand considers two sets of restrictions that must be met: (i) physical constraints (soil type suitability, slope, rainfall-evapotranspiration ratio, and a soil wetness index) and (ii) landscape ecology restrictions at several levels (minimum patch area, land use adjacency index and landscape contagion index). The former assures physical feasibility and the latter the spatial coherence of the landscape. The physical and landscape restrictions were derived from the analysis of past events based on a time series of Landsat images (1985-2003), in order to identify the drivers of land use change and structure. Since the problem has multiple objectives, the GA integrates multi-objective extensions allowing it to evolve a set of non-dominated solutions. An evolutive type algorithm – Evolutive strategy (1+1) – is used, due to the need to accommodate the very large solution space. Current applications have about 1000 decision variables, while the problem analysed by GeneticLand has almost 111000, generated by a landscape with 333*333 discrete pixels. GeneticLand is developed and validated for a Mediterranean type landscape located in southern Portugal. Future climate triggers, such as the increase of intense rainfall episodes, is accommodated to simulate climate change . This paper presents: (1) the formulation of land use modelling as an optimization problem; (2) the formulation of the GA for the explicit spatial domain, (3) the land use constraints derived for a Mediterranean landscape, (4) the results illustrating conflicting objectives, and (5) limitations encountered

    The variability of isokinetic ankle strength is different in healthy older men and women

    Get PDF
    Context: In the elderly, weak lower limb muscles impair functional tasks' performance. Objective: To evaluate the healthy elderly's ankle dorsiflexion and plantarflexion maximum torque and its variability in two sets of 5 RM isokinetics evaluation. Method: 50 women (68.0 ± 4.6 years old) and 50 men (72.7 ± 8.5 years old) did two sets of ankle plantar flexor and dorsiflexor isokinetic tests at 30°/s. Peak torque, total work, and coefficient of variation were analyzed. Results: Men did the strongest plantarflexion torque (p < 0.05) and dorsiflexion torque (p < 0.05); their highest peak torque occurred at set 2 (p < 0.05), while the largest plantarflexion torque variability (p < 0.05), dorsiflexion torque variability (p < 0.05), and the largest plantarflexion torque variability occurred at set 1 (p < 0.05). Men did the highest plantarflexion and dorsiflexion total work (p < 0.05) at set 2 (p < 0.05). Conclusion: Older men are stronger than older women. The torque variability, in men, was higher during the first set, suggesting an adaptation to the isokinetics evaluation. Clinicians and researchers should consider that different muscles might need different numbers of sets and trials to measure their maximal muscle strength

    Erratum to: The study of cardiovascular risk in adolescents – ERICA: rationale, design and sample characteristics of a national survey examining cardiovascular risk factor profile in Brazilian adolescents

    Get PDF
    1585

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon

    Get PDF
    The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe

    Search for stop and higgsino production using diphoton Higgs boson decays

    Get PDF
    Results are presented of a search for a "natural" supersymmetry scenario with gauge mediated symmetry breaking. It is assumed that only the supersymmetric partners of the top-quark (stop) and the Higgs boson (higgsino) are accessible. Events are examined in which there are two photons forming a Higgs boson candidate, and at least two b-quark jets. In 19.7 inverse femtobarns of proton-proton collision data at sqrt(s) = 8 TeV, recorded in the CMS experiment, no evidence of a signal is found and lower limits at the 95% confidence level are set, excluding the stop mass below 360 to 410 GeV, depending on the higgsino mass
    corecore