31 research outputs found
Testing axioms for Quantum Mechanics on Probabilistic toy-theories
In Ref. [1] one of the authors proposed postulates for axiomatizing Quantum
Mechanics as a "fair operational framework", namely regarding the theory as a
set of rules that allow the experimenter to predict future events on the basis
of suitable tests, having local control and low experimental complexity. In
addition to causality, the following postulates have been considered: PFAITH
(existence of a pure preparationally faithful state), and FAITHE (existence of
a faithful effect). These postulates have exhibited an unexpected theoretical
power, excluding all known nonquantum probabilistic theories. Later in Ref. [2]
in addition to causality and PFAITH, postulate LDISCR (local discriminability)
and PURIFY (purifiability of all states) have been considered, narrowing the
probabilistic theory to something very close to Quantum Mechanics. In the
present paper we test the above postulates on some nonquantum probabilistic
models. The first model, "the two-box world" is an extension of the
Popescu-Rohrlich model, which achieves the greatest violation of the CHSH
inequality compatible with the no-signaling principle. The second model "the
two-clock world" is actually a full class of models, all having a disk as
convex set of states for the local system. One of them corresponds to the "the
two-rebit world", namely qubits with real Hilbert space. The third model--"the
spin-factor"--is a sort of n-dimensional generalization of the clock. Finally
the last model is "the classical probabilistic theory". We see how each model
violates some of the proposed postulates, when and how teleportation can be
achieved, and we analyze other interesting connections between these postulate
violations, along with deep relations between the local and the non-local
structures of the probabilistic theory.Comment: Submitted to QIP Special Issue on Foundations of Quantum Informatio
Interpreting Quantum Particles as Conceptual Entities
We elaborate an interpretation of quantum physics founded on the hypothesis
that quantum particles are conceptual entities playing the role of
communication vehicles between material entities composed of ordinary matter
which function as memory structures for these quantum particles. We show in
which way this new interpretation gives rise to a natural explanation for the
quantum effects of interference and entanglement by analyzing how interference
and entanglement emerge for the case of human concepts. We put forward a scheme
to derive a metric based on similarity as a predecessor for the structure of
'space, time, momentum, energy' and 'quantum particles interacting with
ordinary matter' underlying standard quantum physics, within the new
interpretation, and making use of aspects of traditional quantum axiomatics.
More specifically, we analyze how the effect of non-locality arises as a
consequence of the confrontation of such an emerging metric type of structure
and the remaining presence of the basic conceptual structure on the fundamental
level, with the potential of being revealed in specific situations.Comment: 19 pages, 1 figur
Reproducing subgroups of . Part I: algebraic classification
We classify the connected Lie subgroups of the symplectic group
whose elements are matrices in block lower triangular form.
The classification is up to conjugation within . Their study
is motivated by the need of a unified approach to continuous 2D signal
analyses, as those provided by wavelets and shearlets.Comment: 26 page
Curvature-bias corrections using a pseudomass method
Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy √s = 13 TeV during 2016, 2017 and 2018. The biases are determined using Z → μ+μ- decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10-4 GeV-1 level, improves the Z → μ+μ- mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
Search for the Bs0 → μ+μ−γ decay
A search for the fully reconstructed B0
s → µ
+µ
−γ decay is performed at the LHCb
experiment using proton-proton collisions at √
s = 13 TeV corresponding to an integrated
luminosity of 5.4 fb−1
. No signifcant signal is found and upper limits on the branching
fraction in intervals of the dimuon mass are set
B(B
0
s → µ
+µ
−γ) < 4.2 × 10−8
, m(µ
+µ
−) ∈ [2mµ, 1.70] GeV/c2
,
B(B
0
s → µ
+µ
−γ) < 7.7 × 10−8
, m(µ
+µ
−) ∈ [1.70, 2.88] GeV/c2
,
B(B
0
s → µ
+µ
−γ) < 4.2 × 10−8
, m(µ
+µ
−) ∈ [3.92, mB0
s
] GeV/c2
,
at 95% confdence level. Additionally, upper limits are set on the branching fraction in the
[2mµ, 1.70] GeV/c2 dimuon mass region excluding the contribution from the intermediate
ϕ(1020) meson, and in the region combining all dimuon-mass intervals
Study of CP violation in B0 → DK⋆(892)0 decays with D → Kπ(ππ), ππ(ππ), and KK final states
A measurement of CP-violating observables associated with the interference
of B0 → D0K⋆
(892)0 and B0 → D¯ 0K⋆
(892)0 decay amplitudes is performed in the
D0 → K∓π
±(π
+π
−), D0 → π
+π
−(π
+π
−), and D0 → K+K− fnal states using data collected
by the LHCb experiment corresponding to an integrated luminosity of 9 fb−1
. CP-violating
observables related to the interference of B0
s → D0K¯ ⋆
(892)0 and B0
s → D¯ 0K¯ ⋆
(892)0 are also
measured, but no evidence for interference is found. The B0 observables are used to constrain
the parameter space of the CKM angle γ and the hadronic parameters r
DK⋆
B0 and δ
DK⋆
B0 with
inputs from other measurements. In a combined analysis, these measurements allow for four
solutions in the parameter space, only one of which is consistent with the world average
Curvature-bias corrections using a pseudomass method
Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy √(s)=13 TeV during 2016, 2017 and 2018. The biases are determined using Z→μ + μ - decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10-4 GeV-1 level, improves the Z→μ + μ - mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass
