33 research outputs found

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Human Platelet-Rich Plasma Facilitates Angiogenesis to Restore Impaired Uterine Environments with Asherman’s Syndrome for Embryo Implantation and Following Pregnancy in Mice

    No full text
    Asherman’s syndrome (AS) is caused by intrauterine adhesions and inactive endometrium from repeated curettage of the uterine endometrium. AS is a major cause of recurrent implantation failure and miscarriage and is very difficult to treat because of the poor recovery of endometrial basal cells. Platelet-rich plasma (PRP) has abundant growth factors that may induce angiogenesis and cell proliferation. Here, we demonstrate that human PRP (hPRP) significantly enhances angiogenesis to restore embryo implantation, leading to successful pregnancy in mice with AS. In mice with AS, hPRP treatment considerably reduced the expression of fibrosis markers and alleviated oligo/amenorrhea phenotypes. Mice with AS did not produce any pups, but the hPRP therapy restored their infertility. AS-induced abnormalities, such as aberrantly delayed embryo implantation and intrauterine growth retardation, were considerably eliminated by hPRP. Furthermore, hPRP significantly promoted not only the elevation of various angiogenic factors, but also the migration of endometrial stromal cells. It also increased the phosphorylation of STAT3, a critical mediator of wound healing, and the expression of tissue remodeling genes in a fibrotic uterus. PRP could be a promising therapeutic strategy to promote angiogenesis and reduce fibrosis in impaired uterine environments, leading to successful embryo implantation for better clinical outcomes in patients with AS

    Chromosomal abnormalities in spontaneous abortion after assisted reproductive treatment

    No full text
    Abstract Background We evaluated cytogenetic results occurring with first trimester pregnancy loss, and assessed the type and frequency of chromosomal abnormalities after assisted reproductive treatment (ART) and compared them with a control group. We also compared the rate of chromosomal abnormalities according to infertility causes in ICSI group. Methods A retrospective cohort analysis was made of all patients who were referred to the Genetics Laboratory of Fertility Center of CHA Gangnam Medical Center from 2005 to 2009 because of clinical abortion with a subsequent dilation and evacuation (D&E) performed, and patients were grouped by type of conception as follows: conventional IVF (in vitro fertilization) (n = 114), ICSI (intracytoplasmic sperm injection) (n = 140), and control (natural conception or intrauterine insemination [IUI]) (n = 128). Statistical analysis was performed using SPSS software. Results A total 406 specimens were referred to laboratory, ten abortuses were excluded, and in 14 cases, we did not get any spontaneous metaphase, chromosomal constitutions of 382 specimens were successfully obtained with conventional cytogenetic methods. Overall, 52.62% of the miscarriages were found to be cytogenetically abnormal among all patients, the frequency was 48.4% in the control group, 54.3% of miscarriages after ICSI and 55.3% after conventional IVF (p = 0.503). The most prevalent abnormalities were autosomal trisomy, however, nine (11.69%) sex chromosome aneuploidy were noted in the ICSI group vs. four (6.45%) and two (3.23%) cases in the conventional IVF group and control group. We compared chromosomal abnormalities of miscarriages after ICSI according to infertility factor. 55.71% underwent ICSI due to male factors, 44.29% due to non-male factors. ICSI group having male factors showed significantly higher risk of chromosomal abnormalities than ICSI group having non-male factors (65.8% vs. 34.2%, p = 0.009, odds ratio = 1.529, 95% CI = 1.092-2.141). Conclusions There is no increased risk of chromosomal abnormalities due to ART was found with the exception of a greater number of sex chromosomal abnormalities in the ICSI group with male factor infertility. Therefore, these alterations could be correlated with the underlying parental risk of abnormalities and not with the ICSI procedure itself.</p

    Detection of C-reactive protein on a functional poly(thiophene) self-assembled monolayer using surface plasmon resonance

    No full text
    The preparation of a new poly(thiophene) with pendant N-hydroxysuccinimide ester groups and its application to immobilization of biomolecules are reported. A thiophene derivative of N-hydroxysuccinimide ester was polymerized with FeCl3 in chloroform and the resulting poly(thiophene) was characterized by nuclear magnetic resonance (NMR), Fourier transform infrared (FT-IR), and gel permeation chromatography (GPC). This polymer reacts with amine-bearing molecules to yield new poly(thiophene) derivatives and the specific interactions at the side groups could be detected. Thus, a self-assembled monolayer (SAM) using the polymer was formed on a gold-coated quartz cell and anti-C-reactive protein (anti-CRP) was immobilized. The binding behavior of CRP on the surface was monitored by use of a surface plasmon resonance (SPR) sensor system. © 2008 Elsevier B.V. All rights reserved.1

    All Solution processed N-type organic transistor using a spinning metal process

    No full text
    An all-solution-processed n-type transistor of soluble fullerene derivatives, based on a photosensitive organic silver precursor route to deposit source and drain metal electrodes, is reported (see Figure). The field-effect mobility of such devices is strongly dependent on the morphology of the spin-cast semiconducting thin film. The devices fabricated in this manner show a higher electron mobility than devices fabricated by vacuum-shadow deposition

    Formation of Macropore and Three-Dimensional Nanorod Array in p-Type Silicon

    No full text
    We carried out a study on the change in pore wall thickness depending on the current density in p-type silicon. We attempted the formation of a uniform macropore or nanorod array with a high aspect ratio in p-type silicon by electrochemical etching through the optimization of the hydrogen fluoride (HF)/organic electrolyte composition and the design of the mask pattern. The electrochemical etching of p-type silicon in the HF : dimethylsulfoxide (DMSO) : deionized (DI) water 1/4 1 : 5 : 5 electrolyte can control the velocity of a reaction between an electrolyte and a hole necessary for the electrochemical etching of silicon through the mixing of the protic property of DI water and the aprotic property of DMSO. In this study, we fabricated a p-type silicon nanorod array of three-dimensional structures with an approximately 350nm diameter from macroporous Si by applying two-step currents (40 mA, 200 s + 38 mA, 1600 s) to a 1.8 cm2 circular area using an optimized HF : DMSO : DI water 1/4 1 : 5 : 5 electrolyte composition. © 2010 The Japan Society of Applied Physics.1
    corecore