81 research outputs found

    Simulated Milky Way analogues: implications for dark matter direct searches

    Get PDF
    We study the implications of galaxy formation on dark matter direct detection using high resolution hydrodynamic simulations of Milky Way-like galaxies simulated within the eagle and apostle projects. We identify MilkyWay analogues that satisfy observational constraints on the Milky Way rotation curve and total stellar mass. We then extract the dark matter density and velocity distribution in the Solar neighbourhood for this set of Milky Way analogues, and use them to analyse the results of current direct detection experiments. For most Milky Way analogues, the event rates in direct detection experiments obtained from the best _t Maxwellian distribution (with peak speed of 223 { 289 km=s) are similar to those obtained directly from the simulations. As a consequence, the allowed regions and exclusion limits set by direct detection experiments in the dark matter mass and spin-independent cross section plane shift by a few GeV compared to the Standard Halo Model, at low dark matter masses. For each dark matter mass, the halo-to-halo variation of the local dark matter density results in an overall shift of the allowed regions and exclusion limits for the cross section. However, the compatibility of the possible hints for a dark matter signal from DAMA and CDMS-Si and null results from LUX and SuperCDMS is not improved

    Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data

    Get PDF
    This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08 x 10(46) erg s(-1) This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars

    Marine mammals exploring the oceans pole to pole

    Get PDF
    Polar oceans are poorly monitored despite the important role they play in regulating Earth’s climate system. Marine mammals equipped with biologging devices are now being used to fill the data gaps in these logistically difficult to sample regions. Since 2002, instrumented animals have been generating exceptionally large data sets of oceanographic CTD casts (>500,000 profiles), which are now freely available to the scientific community through the MEOP data portal (http://meop.net). MEOP (Marine Mammals Exploring the Oceans Pole to Pole) is a consortium of international researchers dedicated to sharing animal-derived data and knowledge about the polar oceans. Collectively, MEOP demonstrates the power and cost-effectiveness of using marine mammals as data-collection platforms that can dramatically improve the ocean observing system for biological and physical oceanographers. Here, we review the MEOP program and database to bring it to the attention of the international community.http://www.tos.org/oceanographyam2017Mammal Research InstituteZoology and Entomolog

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Die Bedeutung der Lager f�r die Konjunktur

    No full text

    Shedding light on the 239^{239}Pu fission source term with new high-precision experiments and advanced fission modeling

    No full text
    International audienceIn the last decade, there has been a renaissance of fission research resulting in new high-precision experiments and advanced fission modeling. For instance, the Chi-Nu and CEA teams supplied, for the first time, the 239Pu prompt fission neutron spectrum (PFNS) for broad ranges of incident and outgoing neutron energies. The CEA team also measured 239Pu average prompt neutron multiplicities, ν̄p, with lower statistical uncertainties and a technique significantly different than the one used in the past. The NIFFTE collaboration provided 239Pu(n,f)/235U(n,f) cross section shape ratios with uncertainties below 1% utilizing a novel detector type. Advanced fission event generators were developed, among them CGMF, FIFRELIN, FREYA, and GEF, which calculate post-scission fission observables in a correlated manner. These new experimental data and more consistent fission models change the evaluated PFNS, ν̄p, and (n,f) cross sections, some only modestly, compared to ENDF/B-VIII.0. In turn, the individual new nuclear data distinctly change simulated effective neutron multiplication factors of fast critical assemblies, but their combined impact is small, while affecting the prediction of LLNL pulsed sphere neutron leakage spectra and reaction rates only within experimental uncertainties. Also, the parameters obtained from fitting to ν̄p reproduce various post-scission fission observables within the uncertainties of experimental data. This indicates that new differential experiments and consistent fission modeling reduce compensating errors present in ENDF/B-VIII.0.</jats:p

    Shedding light on the 239^{239}Pu fission source term with new high-precision experiments and advanced fission modeling

    No full text
    International audienceIn the last decade, there has been a renaissance of fission research resulting in new high-precision experiments and advanced fission modeling. For instance, the Chi-Nu and CEA teams supplied, for the first time, the 239Pu prompt fission neutron spectrum (PFNS) for broad ranges of incident and outgoing neutron energies. The CEA team also measured 239Pu average prompt neutron multiplicities, ν̄p, with lower statistical uncertainties and a technique significantly different than the one used in the past. The NIFFTE collaboration provided 239Pu(n,f)/235U(n,f) cross section shape ratios with uncertainties below 1% utilizing a novel detector type. Advanced fission event generators were developed, among them CGMF, FIFRELIN, FREYA, and GEF, which calculate post-scission fission observables in a correlated manner. These new experimental data and more consistent fission models change the evaluated PFNS, ν̄p, and (n,f) cross sections, some only modestly, compared to ENDF/B-VIII.0. In turn, the individual new nuclear data distinctly change simulated effective neutron multiplication factors of fast critical assemblies, but their combined impact is small, while affecting the prediction of LLNL pulsed sphere neutron leakage spectra and reaction rates only within experimental uncertainties. Also, the parameters obtained from fitting to ν̄p reproduce various post-scission fission observables within the uncertainties of experimental data. This indicates that new differential experiments and consistent fission modeling reduce compensating errors present in ENDF/B-VIII.0.</jats:p
    corecore