86 research outputs found
Hypertension Prevalence, Awareness, Treatment and Control, and Associated Factors: Results from a National Survey, Jordan
The study examined prevalence, awareness, treatment and control of hypertension (HTN), and associated factors and to evaluate the trend in hypertension between 2009 (period 2) and 1994–1998 (period 1). A national sample of 4117 adults aged 25 years and older was selected. Prevalence rate of HTN (SBP ≥ 140 or DBP ≥ 90 or on antihypertensive therapy) was 32.3% and was higher than the 29.4% prevalence rate reported in period 1. Prevalence rate was significantly higher among males, older age groups, least educated, obese, and diabetics than their counterparts. The rate of awareness among hypertensives was 56.1% and was higher than the 38.8% rate reported form period 1 data. Awareness was positively associated with age, smoking, and diabetes for both men and women, and with level of education and body mass index for men. Rate of treatment for HTN among aware patients was 63.3% and was significantly higher than the 52.8% rate reported in period1. Control rate of HTN among treated hypertensives was 39.6%; significantly higher than the 27.9% control rate in period 1. Control of HTN was positively associated with age but only for women. In conclusion, HTN is still on the rise in Jordan, and levels of awareness and control are below the optimal levels
Field Evaluation to the attraction efficiency for the different sources of the red palm weevil aggregation pheromone
Field experiments were conducted during the periods from June, 2014 to March, 2015, in three date palm orchards located in Al Ain city, Abu Dhabi, United Arab Emirates, in order to evaluate the attraction efficacy for five different sources from the red palm weevil (RPW), Rhynchophorous ferrugineus Oliver (Coleoptera: Curculionidae), aggregation pheromone by using the standard four window black bucket trap. The three orchards are characterized by having different levels of infestation incidence by red palm weevil. The Randomize Complete Block Design (RCBD) with five treatment and three replicates was used in each of the three orchards. The aggregation pheromone sources used in this experiment were: Rhyfer 700, Pherocon RDPW Lure, Ferrugitom 700, Weevil lure, and Ferrulure +. Collectively in the three farms as well as per each farm, Weevillure aggregation pheromone trap capture significantly lower average numbers of RPW adults than Rhyfer, Pherocon, Ferrulure, and Ferrugitom pheromone sources. Rhyfer pheromone is about 1.12, 1.18, 1.56 & 1.16 % more efficient than Pherocon, Ferrugitom, Weevillure & Ferrulure, respectively
Variations in the prevalence of point (pre)hypertension in a Nigerian school-going adolescent population living in a semi-urban and an urban area
<p>Abstract</p> <p>Background</p> <p>Hypertension has been shown to start in early life and to track into adulthood. Detecting adolescents with hypertension and prehypertension will aid early intervention and reduce morbidity and mortality from the disorders. This study reports the point-prevalence of the two disorders in a semi-urban and an urban population of school-going adolescents in Nigeria.</p> <p>Methods</p> <p>A total of 843 adolescents from two places of domicile were studied. Their blood pressures and anthropometric indices were measured using standard protocol. Point-hypertension and point-prehypertension were defined with respect to each subject's gender, age and height. The prevalence of the disorders was calculated and reported age-wise and nutritional status-wise.</p> <p>Results</p> <p>The prevalence of point-prehypertension in the semi-urban area was 22.2% (20.7% for girls and 23.1% for boys) while it was 25.0% (21.8% for girls and 29.2% for boys) in the urban area. The prevalence of point-hypertension was 4.6% (4.1% for girls and 4.8% for boys) in the semi-urban area and 17.5% (18.0% for girls and 16.9% for boys) in the urban area. Point-prehypertension was not detected among the thin subjects of both places of domicile. The prevalence of point-prehypertension was similar in both the urban and semi-urban areas among the subjects who had normal BMI-for-age, and over-weight/obese subjects respectively. From the semi-urban to the urban area, the prevalence of point-hypertension increased approximately 3-folds among thin and normal BMI-for-age subjects, and 10-folds among overweight/obese subjects. Systolic hypertension was more preponderant in both the semi-urban and urban areas.</p> <p>Conclusions</p> <p>The prevalence of both disorders is considerably high in the studied populations. Urgent pediatric public health action is needed to address the situation.</p
Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: a comparative risk assessment
Background High blood pressure, blood glucose, serum cholesterol, and BMI are risk factors for cardiovascular
diseases and some of these factors also increase the risk of chronic kidney disease and diabetes. We estimated mortality from cardiovascular diseases, chronic kidney disease, and diabetes that was attributable to these four
cardiometabolic risk factors for all countries and regions from 1980 to 2010.
Methods We used data for exposure to risk factors by country, age group, and sex from pooled analyses of populationbased health surveys. We obtained relative risks for the eff ects of risk factors on cause-specifi c mortality from metaanalyses
of large prospective studies. We calculated the population attributable fractions for- each risk factor alone,
and for the combination of all risk factors, accounting for multicausality and for mediation of the eff ects of BMI by the other three risks. We calculated attributable deaths by multiplying the cause-specifi c population attributable fractions by the number of disease-specifi c deaths. We obtained cause-specifi c mortality from the Global Burden of Diseases, Injuries, and Risk Factors 2010 Study. We propagated the uncertainties of all the inputs to the fi nal estimates.
Findings In 2010, high blood pressure was the leading risk factor for deaths due to cardiovascular diseases, chronic kidney disease, and diabetes in every region, causing more than 40% of worldwide deaths from these diseases; high BMI and glucose were each responsible for about 15% of deaths, and high cholesterol for more than 10%. After
accounting for multicausality, 63% (10\ub78 million deaths, 95% CI 10\ub71\u201311\ub75) of deaths from these diseases in 2010 were attributable to the combined eff ect of these four metabolic risk factors, compared with 67% (7\ub71 million deaths,
6\ub76\u20137\ub76) in 1980. The mortality burden of high BMI and glucose nearly doubled from 1980 to 2010. At the country
level, age-standardised death rates from these diseases attributable to the combined eff ects of these four risk factors
surpassed 925 deaths per 100 000 for men in Belarus, Kazakhstan, and Mongolia, but were less than 130 deaths per 100 000 for women and less than 200 for men in some high-income countries including Australia, Canada, France,
Japan, the Netherlands, Singapore, South Korea, and Spain.
Interpretation The salient features of the cardiometabolic disease and risk factor epidemic at the beginning of
the 21st century are high blood pressure and an increasing eff ect of obesity and diabetes. The mortality burden
of cardiometabolic risk factors has shifted from high-income to low-income and middle-income countries. Lowering
cardiometabolic risks through dietary, behavioural, and pharmacological interventions should be a part of the globalresponse to non-communicable diseases
Repositioning of the global epicentre of non-optimal cholesterol
High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world
Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults.
BACKGROUND: Underweight, overweight, and obesity in childhood and adolescence are associated with adverse health consequences throughout the life-course. Our aim was to estimate worldwide trends in mean body-mass index (BMI) and a comprehensive set of BMI categories that cover underweight to obesity in children and adolescents, and to compare trends with those of adults. METHODS: We pooled 2416 population-based studies with measurements of height and weight on 128·9 million participants aged 5 years and older, including 31·5 million aged 5-19 years. We used a Bayesian hierarchical model to estimate trends from 1975 to 2016 in 200 countries for mean BMI and for prevalence of BMI in the following categories for children and adolescents aged 5-19 years: more than 2 SD below the median of the WHO growth reference for children and adolescents (referred to as moderate and severe underweight hereafter), 2 SD to more than 1 SD below the median (mild underweight), 1 SD below the median to 1 SD above the median (healthy weight), more than 1 SD to 2 SD above the median (overweight but not obese), and more than 2 SD above the median (obesity). FINDINGS: Regional change in age-standardised mean BMI in girls from 1975 to 2016 ranged from virtually no change (-0·01 kg/m2 per decade; 95% credible interval -0·42 to 0·39, posterior probability [PP] of the observed decrease being a true decrease=0·5098) in eastern Europe to an increase of 1·00 kg/m2 per decade (0·69-1·35, PP>0·9999) in central Latin America and an increase of 0·95 kg/m2 per decade (0·64-1·25, PP>0·9999) in Polynesia and Micronesia. The range for boys was from a non-significant increase of 0·09 kg/m2 per decade (-0·33 to 0·49, PP=0·6926) in eastern Europe to an increase of 0·77 kg/m2 per decade (0·50-1·06, PP>0·9999) in Polynesia and Micronesia. Trends in mean BMI have recently flattened in northwestern Europe and the high-income English-speaking and Asia-Pacific regions for both sexes, southwestern Europe for boys, and central and Andean Latin America for girls. By contrast, the rise in BMI has accelerated in east and south Asia for both sexes, and southeast Asia for boys. Global age-standardised prevalence of obesity increased from 0·7% (0·4-1·2) in 1975 to 5·6% (4·8-6·5) in 2016 in girls, and from 0·9% (0·5-1·3) in 1975 to 7·8% (6·7-9·1) in 2016 in boys; the prevalence of moderate and severe underweight decreased from 9·2% (6·0-12·9) in 1975 to 8·4% (6·8-10·1) in 2016 in girls and from 14·8% (10·4-19·5) in 1975 to 12·4% (10·3-14·5) in 2016 in boys. Prevalence of moderate and severe underweight was highest in India, at 22·7% (16·7-29·6) among girls and 30·7% (23·5-38·0) among boys. Prevalence of obesity was more than 30% in girls in Nauru, the Cook Islands, and Palau; and boys in the Cook Islands, Nauru, Palau, Niue, and American Samoa in 2016. Prevalence of obesity was about 20% or more in several countries in Polynesia and Micronesia, the Middle East and north Africa, the Caribbean, and the USA. In 2016, 75 (44-117) million girls and 117 (70-178) million boys worldwide were moderately or severely underweight. In the same year, 50 (24-89) million girls and 74 (39-125) million boys worldwide were obese. INTERPRETATION: The rising trends in children's and adolescents' BMI have plateaued in many high-income countries, albeit at high levels, but have accelerated in parts of Asia, with trends no longer correlated with those of adults. FUNDING: Wellcome Trust, AstraZeneca Young Health Programme
Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: A comparative risk assessment
Background: High blood pressure, blood glucose, serum cholesterol, and BMI are risk factors for cardiovascular diseases and some of these factors also increase the risk of chronic kidney disease and diabetes. We estimated mortality from cardiovascular diseases, chronic kidney disease, and diabetes that was attributable to these four cardiometabolic risk factors for all countries and regions from 1980 to 2010. Methods: We used data for exposure to risk factors by country, age group, and sex from pooled analyses of population-based health surveys. We obtained relative risks for the effects of risk factors on cause-specific mortality from meta-analyses of large prospective studies. We calculated the population attributable fractions for each risk factor alone, and for the combination of all risk factors, accounting for multicausality and for mediation of the effects of BMI by the other three risks. We calculated attributable deaths by multiplying the cause-specific population attributable fractions by the number of disease-specific deaths. We obtained cause-specific mortality from the Global Burden of Diseases, Injuries, and Risk Factors 2010 Study. We propagated the uncertainties of all the inputs to the final estimates. Findings: In 2010, high blood pressure was the leading risk factor for deaths due to cardiovascular diseases, chronic kidney disease, and diabetes in every region, causing more than 40% of worldwide deaths from these diseases; high BMI and glucose were each responsible for about 15% of deaths, and high cholesterol for more than 10%. After accounting for multicausality, 63% (10·8 million deaths, 95% CI 10·1-11·5) of deaths from these diseases in 2010 were attributable to the combined effect of these four metabolic risk factors, compared with 67% (7·1 million deaths, 6·6-7·6) in 1980. The mortality burden of high BMI and glucose nearly doubled from 1980 to 2010. At the country level, age-standardised death rates from these diseases attributable to the combined effects of these four risk factors surpassed 925 deaths per 100 000 for men in Belarus, Kazakhstan, and Mongolia, but were less than 130 deaths per 100 000 for women and less than 200 for men in some high-income countries including Australia, Canada, France, Japan, the Netherlands, Singapore, South Korea, and Spain. Interpretation: The salient features of the cardiometabolic disease and risk factor epidemic at the beginning of the 21st century are high blood pressure and an increasing effect of obesity and diabetes. The mortality burden of cardiometabolic risk factors has shifted from high-income to low-income and middle-income countries. Lowering cardiometabolic risks through dietary, behavioural, and pharmacological interventions should be a part of the global response to non-communicable diseases. Funding: UK Medical Research Council, US National Institutes of Health. © 2014 Elsevier Ltd
Global variation in diabetes diagnosis and prevalence based on fasting glucose and hemoglobin A1c
Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) are both used to diagnose diabetes, but these measurements can identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening, had elevated FPG, HbA1c or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardized proportion of diabetes that was previously undiagnosed and detected in survey screening ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the age-standardized proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c was more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global shortfall in diabetes diagnosis and surveillance
Rising rural body-mass index is the main driver of the global obesity epidemic in adults
Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.Peer reviewe
- …