1,913 research outputs found
Coral thermal microclimate : investigating the effects of irradiance, flow and coral thermophysical properties
University of Technology, Sydney. Faculty of Science.Understanding the processes that drive the variability in thermal tolerance among scleractinian corals is key to predicting the impacts of rising worldwide temperatures on coral reefs. This thesis explores the thermal microclimate of corals, and specifically examines the thermal effects of environmental conditions of flow and irradiance, combined with the optical, thermal and morphological characteristics of individual coral colonies.
The temperature of branching (Porites cylindrica) and hemispherical (Porites lobata and Cyphastrea serailia) coral species was monitored on a shallow reef flat in the Southern Great Barrier Reef. This revealed a strong diurnal and tidal pattern in solar heating of corals, whereby maximum coral surface warming of ~+0.6 °C occurred during low Spring tides, under conditions of high irradiance and low water flow.
Microsensor temperature measurements were used to demonstrate for the first time that at flow velocities <5 cm s-1 heat transfer at the surface of corals was controlled by a thermal boundary layer (TBL). Dimensionless analysis of heat transfer (Nusselt-Reynolds number plots) confirmed that convective heat transfer at the surface of hemispherical Porites lobata and branching colonies (Stylophora pistillata occurred through a laminar boundary layer, consistent with predictions from engineering theory for simple geometrical objects. For topographically more complex corals (Favia and Platygyra sp.) both the TBL thickness and the surface temperature was spatially heterogeneous.
Temperature and spectral reflectance measurements were used to investigate close links between the thermal and optical properties of corals. Coral surface temperature could be expressed as a linear function of the tissue's absorptivity, but this relationship was species-specific, and highlighted the thermal importance of the skeleton. The spectral composition of light was important in determining the magnitude of coral surface warming, and short wavelengths (<500 nm) had the greatest heating efficiency.
Finally, a mechanistic thermal model of corals identified both irradiance absorption and convective heat loss as the major controlling parameters of coral surface warming. Conductive heat transfer into the skeleton was a negligible portion of the overall heat budget, except for small coral diameters (~1 cm). Experimental and theoretical results throughout this thesis revealed that the surface warming of hemispherical coral species was greater than that of branching species, and indicates that massive species may tolerate temperatures greater than previously thought. In light of the greater bleaching resistance of massive compared to branching species, this warrants further investigation into the effects of small temperature differences on the physiological response of morphologically distinct, bleaching sensitive and resistant coral species
Heat budget and thermal microenvironment of shallow-water corals: Do massive corals get warmer than branching corals?
Coral surface temperature was investigated with multiple temperature sensors mounted on hemispherical and branching corals under (a) artificial lighting and controlled flow; (b) natural sunlight and controlled flow; and (c) in situ conditions in a shallow lagoon, under naturally fluctuating irradiance, water flow, and temperature. Under high irradiance and low flow conditions, hemispherical corals were 0.6°C warmer than the surrounding water. Hemispherical corals reached higher temperatures than branching corals, by a measure of 0.2°C to 0.4°C. Microsensor temperature measurements showed the presence of a thermal boundary layer (TBL). The TBL thickness was flow dependent, and under low flow conditions, a TBL up to 3 mm thick limited heat transfer to the ambient water. Combined microsensor measurements of temperature and oxygen showed that the TBL was approximately four times thicker than the diffusive boundary layer, as predicted from heat and mass transfer theory. A simple conceptual model describes coral surface temperature as a function of heat fluxes between coral tissue, skeleton, and surroundings. The slope of the predicted linear relationship between coral temperature and solar irradiance is fixed by the efficiencies of light absorption and the heat losses to the skeleton and the water. Although spectral absorptivity may play a significant role in coral warming, shape-related differences in thermal properties can cause hemispherical corals to reach higher temperatures than branching corals. Shape-related differences in thermal histories may thus help explain differences in susceptibility to coral bleaching between branching and hemispherical coral species. © 2008, by the American Society of Limnology and Oceanography, Inc
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Analysis of the Effects of Polymorphism on Pollen Profilin Structural Functionality and the Generation of Conformational, T- and B-Cell Epitopes
An extensive polymorphism analysis of pollen profilin, a fundamental regulator of the actin cytoskeleton dynamics, has been performed with a major focus in 3D-folding maintenance, changes in the 2-D structural elements, surface residues involved in ligands-profilin interactions and functionality, and the generation of conformational and lineal B- and T-cell epitopes variability.
Our results revealed that while the general fold is conserved among profilins, substantial structural differences were found, particularly affecting the special distribution and length of different 2-D structural elements (i.e. cysteine residues), characteristic loops and coils, and numerous micro-heterogeneities present in fundamental residues directly involved in the interacting motifs, and to some extension these residues nearby to the ligand-interacting areas. Differential changes as result of polymorphism might contribute to generate functional variability among the plethora of profilin isoforms present in the olive pollen from different genetic background (olive cultivars), and between plant species, since biochemical interacting properties and binding affinities to natural ligands may be affected, particularly the interactions with different actin isoforms and phosphoinositides lipids species.
Furthermore, conspicuous variability in lineal and conformational epitopes was found between profilins belonging to the same olive cultivar, and among different cultivars as direct implication of sequences polymorphism. The variability of the residues taking part of IgE-binding epitopes might be the final responsible of the differences in cross-reactivity among olive pollen cultivars, among pollen and plant-derived food allergens, as well as between distantly related pollen species, leading to a variable range of allergy reactions among atopic patients. Identification and analysis of commonly shared and specific epitopes in profilin isoforms is essential to gain knowledge about the interacting surface of these epitopes, and for a better understanding of immune responses, helping design and development of rational and effective immunotherapy strategies for the treatment of allergy diseases. [EN]This study was supported by the following European Regional Development Fund co-financed grants: MCINN BFU 2004-00601/BFI, BFU 2008-00629, BFU2011-22779, CICE (Junta de Andalucía) P2010-CVI15767, P2010-AGR6274 and P2011-CVI-7487, and by the coordinated project Spain/Germany MEC HA2004-0094. JCJ-L thanks Spanish CSIC and the European Marie Curie research program for his I3P-BPD-CSIC, and PIOF-GA-2011-301550 grants, respectively.Peer reviewe
Targeted NGS gene panel identifies mutations in RSPH1 causing primary ciliary dyskinesia and a common mechanism for ciliary central pair agenesis due to radial spoke defects.
Primary ciliary dyskinesia (PCD) is an inherited chronic respiratory obstructive disease with randomized body laterality and infertility, resulting from cilia and sperm dysmotility. PCD is characterized by clinical variability and extensive genetic heterogeneity, associated with different cilia ultrastructural defects and mutations identified in >20 genes. Next generation sequencing (NGS) technologies therefore present a promising approach for genetic diagnosis which is not yet in routine use. We developed a targeted panel-based NGS pipeline to identify mutations by sequencing of selected candidate genes in 70 genetically undefined PCD patients. This detected loss-of-function RSPH1 mutations in four individuals with isolated central pair (CP) agenesis and normal body laterality, from two unrelated families. Ultrastructural analysis in RSPH1-mutated cilia revealed transposition of peripheral outer microtubules into the 'empty' CP space, accompanied by a distinctive intermittent loss of the central pair microtubules. We find that mutations in RSPH1, RSPH4A and RSPH9, which all encode homologs of components of the 'head' structure of ciliary radial spoke complexes identified in Chlamydomonas, cause clinical phenotypes that appear to be indistinguishable except at the gene level. By high-resolution immunofluorescence we identified a loss of RSPH4A and RSPH9 along with RSPH1 from RSPH1-mutated cilia, suggesting RSPH1 mutations may result in loss of the entire spoke head structure. CP loss is seen in up to 28% of PCD cases, in whom laterality determination specified by CP-less embryonic node cilia remains undisturbed. We propose this defect could arise from instability or agenesis of the ciliary central microtubules due to loss of their normal radial spoke head tethering
Effectiveness of influenza vaccine against laboratory-confirmed influenza, in the late 2011-2012 season in Spain, among population targeted for vaccination
Background: In Spain, the influenza vaccine effectiveness (VE) was estimated in the last three seasons using the observational study cycEVA conducted in the frame of the existing Spanish Influenza Sentinel Surveillance System. The objective of the study was to estimate influenza vaccine effectiveness (VE) against medically attended, laboratory-confirmed influenza-like illness (ILI) among the target groups for vaccination in Spain in the 2011-2012 season. We also studied influenza VE in the early (weeks 52/2011-7/2012) and late (weeks 8-14/2012) phases of the epidemic and according to time since vaccination. Methods: Medically attended patients with ILI were systematically swabbed to collect information on exposure, laboratory outcome and confounding factors. Patients belonging to target groups for vaccination and who were swabbed 4 months, respectively, since vaccination. A decrease in VE with time since vaccination was only observed in individuals aged ≥ 65 years. Regarding the phase of the season, decreasing point estimates were only observed in the early phase, whereas very low or null estimates were obtained in the late phase for the shortest time interval. Conclusions: The 2011-2012 influenza vaccine showed a low-to-moderate protective effect against medically attended, laboratory-confirmed influenza in the target groups for vaccination, in a late season and with a limited match between the vaccine and circulating strains. The suggested decrease in influenza VE with time since vaccination was mostly observed in the elderly population. The decreasing protective effect of the vaccine in the late part of the season could be related to waning vaccine protection because no viral changes were identified throughout the season
On the buildup of massive early-type galaxies at z<~1. I- Reconciling their hierarchical assembly with mass-downsizing
Several studies have tried to ascertain whether or not the increase in
abundance of the early-type galaxies (E-S0a's) with time is mainly due to major
mergers, reaching opposite conclusions. We have tested it directly through
semi-analytical modelling, by studying how the massive early-type galaxies with
log(M_*/Msun)>11 at z~0 (mETGs) would have evolved backwards-in-time, under the
hypothesis that each major merger gives place to an early-type galaxy. The
study was carried out just considering the major mergers strictly reported by
observations at each redshift, and assuming that gas-rich major mergers
experience transitory phases of dust-reddened, star-forming galaxies (DSFs).
The model is able to reproduce the observed evolution of the galaxy LFs at
z<~1, simultaneously for different rest-frame bands (B, I, and K) and for
different selection criteria on color and morphology. It also provides a
framework in which apparently-contradictory results on the recent evolution of
the luminosity function (LF) of massive, red galaxies can be reconciled, just
considering that observational samples of red galaxies can be significantly
contaminated by DSFs. The model proves that it is feasible to build up ~50-60%
of the present-day mETG population at z<~1 and to reproduce the observational
excess by a factor of ~4-5 of late-type galaxies at 0.8<z<1 through the
coordinated action of wet, mixed, and dry major mergers, fulfilling global
trends that are in general agreement with mass-downsizing. The bulk of this
assembly takes place during ~1 Gyr elapsed at 0.8<z<1. The model suggests that
major mergers have been the main driver for the observational migration of mass
from the massive-end of the blue galaxy cloud to that of the red sequence in
the last ~8 Gyr.(Abridged)Comment: Accepted for publication in Astronomy & Astrophysics; 21 pages, 8
figures. Minor corrections included, shortened title. Results and conclusions
unchange
- …
