1,744 research outputs found

    Letter to the Editor

    Get PDF

    Generative deep fields : arbitrarily sized, random synthetic astronomical images through deep learning

    Get PDF
    © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.Generative Adversarial Networks (GANs) are a class of artificial neural network that can produce realistic, but artificial, images that resemble those in a training set. In typical GAN architectures these images are small, but a variant known as Spatial-GANs (SGANs) can generate arbitrarily large images, provided training images exhibit some level of periodicity. Deep extragalactic imaging surveys meet this criteria due to the cosmological tenet of isotropy. Here we train an SGAN to generate images resembling the iconic Hubble Space Telescope eXtreme Deep Field (XDF). We show that the properties of 'galaxies' in generated images have a high level of fidelity with galaxies in the real XDF in terms of abundance, morphology, magnitude distributions and colours. As a demonstration we have generated a 7.6-billion pixel 'generative deep field' spanning 1.45 degrees. The technique can be generalised to any appropriate imaging training set, offering a new purely data-driven approach for producing realistic mock surveys and synthetic data at scale, in astrophysics and beyond.Peer reviewe

    The linear bias of radio galaxies at z~0.3 via cosmic microwave background lensing

    Get PDF
    © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical SocietyWe present a new measurement of the linear bias of radio loud active galactic nuclei (RLAGN) at z0.3z\approx0.3 and L1.4GHz>1023WHz1L_{\rm 1.4GHz}>10^{23}\,{\rm W\,Hz^{-1}} selected from the Best & Heckman (2012) sample, made by cross-correlating the RLAGN surface density with a map of the convergence of the weak lensing field of the cosmic microwave background from Planck. We detect the cross-power signal at a significance of 3σ3\sigma and use the amplitude of the cross-power spectrum to estimate the linear bias of RLAGN, b=2.5±0.8b=2.5 \pm 0.8, corresponding to a typical dark matter halo mass of log10(Mh/h1M)=14.00.5+0.3\log_{10}(M_{\rm h} /h^{-1} M_\odot)=14.0^{+0.3}_{-0.5}. When RLAGN associated with optically-selected clusters are removed we measure a lower bias corresponding to log10(Mh/h1M)=13.71.0+0.4\log_{10}(M_{\rm h} /h^{-1} M_\odot)=13.7^{+0.4}_{-1.0}. These observations support the view that powerful RLAGN typically inhabit rich group and cluster environments.Peer reviewe

    A flat trend of star-formation rate with X-ray luminosity of galaxies hosting AGN in the SCUBA-2 Cosmology Legacy Survey

    Get PDF
    © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.Feedback processes from active galactic nuclei (AGN) are thought to play a crucial role in regulating star formation in massive galaxies. Previous studies using Herschel have resulted in conflicting conclusions as to whether star formation is quenched, enhanced, or not affected by AGN feedback. We use new deep 850 μm observations from the SCUBA-2 Cosmology Legacy Survey (S2CLS) to investigate star formation in a sample of X-ray selected AGN, probing galaxies up to L 0.5-7keV = 10 46 erg s -1. Here, we present the results of our analysis on a sample of 1957 galaxies at 1 < z < 3, using both S2CLS and ancilliary data at seven additional wavelengths (24-500 μm) from Herschel and Spitzer. We perform a stacking analysis, binning our sample by redshift and X-ray luminosity. By fitting analytical spectral energy distributions (SEDs) to decompose contributions from cold and warm dust, we estimate star formation rates (SFRs) for each 'average' source. We find that the average AGN in our sample resides in a star-forming host galaxy, with SFRs ranging from 80 to 600 M ⊙ yr -1. Within each redshift bin, we see no trend of SFR with X-ray luminosity, instead finding a flat distribution of SFR across ∼3 orders of magnitude of AGN luminosity. By studying instantaneous X-ray luminosities and SFRs, we find no evidence that AGN activity affects star formation in host galaxies.Peer reviewedFinal Accepted Versio

    The algebraic application of Lewis structures in conjunction with combinatorial analysis in global molecular identification from graphs

    Get PDF
    Closed shell bonding can be described by a theory that relates the manner that atoms fill their outer shells to algebraic formulas. Equations can be derived that are capable of deciding whether a given electron configuration gives a closed shell electron structure or not. A combinatorial analysis can be used to try every possible electron configuration for a given structure. The equations are then used to determine whether each structure gives a closed shell electron configuration. Some of these molecules may be considered impossible because they are bonded to noble gases. However, a list of molecules that contain a noble gas species is included to show that bonding to noble gases is not impossible. An initial list of triatomic linear molecules is presented

    Obscured activity and the role of environment on galaxy evolution at high redshift

    Get PDF
    A significant amount of activity in the Universe is obscured by dust, produced in the final phases of stellar evolution and in the detonation of Type II supernovae. Re-processed radiation from starlight is emitted from this dust at infrared wavelengths, and this must be taken into consideration when performing surveys of star formation (and nuclear activity) in order to form an unbiased picture of galaxy evolution. It is also clear that the star formation histories of galaxies are significantly modified by their local environment, the outcome of which is the characteristic galaxy populations observed in rich clusters and in the field in the local Universe. In this thesis I examine galaxy evolution in the context of environment from z ~ 0.5 to 2 ~ 3, paying attention to obscured activity revealed by observations in the rest-frame infrared. A mid-infrared (24μm) survey of two intermediate redshift clusters reveals a population of luminous infrared galaxies (LIRGs) which are missed in optical surveys (or significantly underestimated in terms of their star formation rates). Despite there being a large difference between the number of LIRGs detected in the two clusters (likely due to varying global cluster properties controlling the survival of starbursts in the cluster environment), these could be a potentially important population of galaxies. Their large star formation rates mean that they could evolve into local passive S0s by the present day. Although the S0s must be assembled after z ~ 0.5, local clusters are also dominated by massive elliptical galaxies which are mostly already in place by z ~ 0.5, and therefore must have assembled their stellar mass at much higher redshifts (z ≥3). At z = 3.1 I examine the nature of extreme activity in a rich, primitive environment - an example of a progenitor of a rich cluster of galaxies, and therefore the likely site of formation of local massive ellipticals. A number of giant (100 kpc-scale) Lyman-α emission-line nebulae (LABs) in the SA 22 protocluster contain bright submillimeter (850μm) galaxies (SMGs). Their extremely luminous rest-frame far-infrared emission suggest very high star formation rates and/or nuclear activity. Given that a large fraction of LABs seem to contain these active galaxies, it is plausible to link LABs' formation with feedback events such as superwind outflows from starburst regions. Indeed, a weak correlation between the SMGs' bolometric luminosity and the LABs' Lya luminosities appears to suggest that SMGs are powering these extended haloes. Although feedback from active galaxies appears to be important at early times, it remains a significant factor in galaxy-environment symbiosis at all epochs. The most profound effect a galaxy can have on its surroundings is to impart energy to the surrounding medium. In clusters, this is important for preventing the cooling of baryons and therefore the truncation of star formation. I investigate the environments of four low-power (L(_1.4GHz) ≤ 10(^25) WHz (^-1)) radio galaxies in the Subaru-XMM-Newton Deep Field at z ~ 0.5. The environments are all found to be moderately rich groups, and at least one shows evidence that it is in a stage of cluster assembly via sub-group merging. The conclusion is that the radio loud active galactic nuclei are triggered by galaxy-galaxy interactions within sub-groups, prior to cluster virialisation. These radio galaxies are destined to become brightest cluster galaxies, providing a low-power, but high-duty cycle feedback on gas in high-density regions at low redshift - necessary to suppress star formation in massive ellipticals at z ~ 0. The hostility of clusters to star formation (or at least the observation that it is suppressed in the highest density regions of the local Universe) is thought to be in part responsible for the rapid decline in the global volume averaged star formation rate (SFRD) since 2 ~ 1. Tracking the evolution of the SFRD beyond z ~ 1 is hard, because optical tracers (e.g. Ha) used in the local Universe become redshifted into the near-infrared, and up until recently the cameras suitable for large surveys have not been available. I have performed the largest ever near-infrared narrowband blank field survey for Hα emission at z = 2.23. Understanding the evolution of the SFRD before its decline to the present day is essential if we are to find the 'epoch' of galaxy formation. I present the Hα luminosity function and measure the SFRD at this epoch, finding little evolution in the time between z = 1.3 and z = 2.23. This is consistent with a flattening of the SFRD, indicating that this is the peak era of star formation in the Universe, before the gradual suppression of activity during the build up of groups and clusters to the present day

    An Attempted Determination of the Approximate Chemical Composition of the Livingston Volcanics by the Fused Bead Technique

    Get PDF
    Many fine-grained igneous rocks, basaltic and felsitic in character, are difficult to classify. In numer­ous cases, it is impossible to classify these types of rocks by quick methods of identification. It was hoped at the beginning of this study that refractive indices of glasses formed by quick artificial fusion of samples from selected suites of igneous rocks would show a close cor­relation in chemical composition

    Exercises for word analysis in grade III,

    Full text link
    Thesis (M.A.)--Boston University, 1949. This item was digitized by the Internet Archive
    corecore