17 research outputs found

    Indium-decorated Pd nanocubes degrade nitrate anions rapidly

    Get PDF
    Indium-decorated palladium nanoparticles (In-on-PdNPs) are active for room-temperature catalytic reduction of aqueous nitrate, where the active sites are metallic In atoms on the Pd surface. The PdNPs are pseudo-spherical in shape, and it is unclear if their faceted nature plays a role in nitrate reduction. We synthesized different-sized, cube-shaped NPs with differing In coverages (sc%), and studied the resultant In-on-Pd-nanocubes (NCs) for nitrate reduction. The NCs exhibited volcano-shape activity dependence on In sc%, with peak activity around 65–75 sc%. When rate constants were normalized to undercoordinated atoms (at edge + corners), the NCs exhibited near-identical maximum activity (20×-higher than In-on-PdNPs) at ρIn/Pd edge+corner ∼0.5 (∼5 In atoms per 10 edge and corner atoms). NCs with a higher In edge + corner density (ρIn/Pd edge+corner ∼1.5) were less active but did not generate NH4+ at nitrate conversions tested up to 36 %. Edge-decorated cubes may be the structural basis of improved bimetallic catalytic denitrification of water

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Developing gold-based nanostructures to study catalytic reactions in water

    No full text
    Gold-based catalysts are effective for reactions that occur in water. They are not well understood though, with regard to the nature of active sites and surface reaction mechanisms. Water presents interesting challenges in performing catalytic studies, as it interferes with infrared spectroscopy commonly used to detect surface intermediates under reaction conditions. Insights leading to improved catalysts can be gained if gold-based nanostructures could be designed, engineered, and tested for a given chemical reaction. Two gold-based water-phase catalytic reactions were considered for this thesis: glycerol oxidation and hydrodechlorination of chlorinated ethenes. Glycerol is a by-product of biofuel production, and is considered a possible non-petroleum feedstock for chemicals if efficient conversion processes exist. It can be oxidized using Au catalysts in alkaline solution, but the surface reaction mechanism is not known and the role of basic pH is not fully understood. Gold nanoshells (Au NSs) were used for the first time to study glycerol oxidation through surface-enhanced Raman spectroscopy (SERS). Raman bands for surface-adsorbed glyceric acid, the major reaction product, were detected. High oxygen content and high pH values led to carbon monoxide surface species, indicating carbon-carbon cleavage. When the glycerolate:O2 ratio was constant, higher pH led to advance decomposition, due to the activation of O2 by adsorbed hydroxide ions. The catalytic HDC of chlorinated ethenes can potentially remove these contaminants from groundwater. This reaction occurs at room temperature and uses palladium-coated gold nanoparticles (Pd/Au NPs), which are more efficient then pure Pd. The Au NSs were coated with Pd and used to study the surface intermediates of 1,1-dichloroethene HDC through SERS. Pathways were ascertained through careful Raman band assignments to probable chemical species and analysis of bulk reaction products, leading to the formulation of a reaction mechanism. Gold enhances Pd catalysis for HDC, presumably through the generation of palladium-based active sites, though the true active site is unknown. The effects of chloride and sulfide on the activity of Pd/Au NPs for trichloroethene HDC were studied to provide information about active sites and deactivation properties. The activity of Pd/Au NPs was unaffected by NaCl, while that of the pure Pd catalysts decreased. Pd/Au NPs were resistant to sulfide poisoning compared to pure Pd catalysts. This increased resistance is attributed to the formation of small Pd islands on the Au NPs

    Effectiveness of metal oxide catalysts for the degradation of 1,4-dioxane

    No full text
    1,4-dioxane, commonly used as a solvent stabilizer and industrial solvent, is an environmental contaminant and probable carcinogen. In this study, we explored the concept of using metal oxides to activate H2O2 catalytically at neutral pH in the dark for 1,4-dioxane degradation. Based on batch kinetics measurements, materials that displayed the most suitable characteristics (high 1,4-dioxane degradation activity and high H2O2 consumption efficiency) were ZrO2, WOx/ZrO2, and CuO. In contrast, materials like TiO2, WO3, and aluminosilicate zeolite Y exhibited both low 1,4-dioxane degradation and H2O2 consumption activities. Other materials (e.g., Fe2O3 and CeO2) consumed H2O2 rapidly, however 1,4-dioxane degradation was negligible. The supported metal oxide WOx/ZrO2 was the most active for 1,4-dioxane degradation and had higher H2O2 consumption efficiency compared to ZrO2. In situ acetonitrile poisoning and FTIR spectroscopy results indicate different surface acid sites for 1,4-dioxane and H2O2 adsorption and reaction. Electron paramagnetic resonance measurements indicate that H2O2 forms hydroxyl radicals (OH) in the presence of CuO, and unusually, forms superoxide/peroxyl radicals (O-2(-)) in the presence of WOx/ZrO2. The identified material properties suggest metal oxides/H2O2 as a potential advanced oxidation process in the treatment of 1,4-dioxane and other recalcitrant organic compounds

    Recurrent arginine substitutions in the ACTG2 gene are the primary driver of disease burden and severity in visceral myopathy

    Get PDF
    Visceral myopathy with abnormal intestinal and bladder peristalsis includes a clinical spectrum with megacystis-microcolon intestinal hypoperistalsis syndrome and chronic intestinal pseudo-obstruction. The vast majority of cases are caused by dominant variants in ACTG2; however, the overall genetic architecture of visceral myopathy has not been well-characterized. We ascertained 53 families, with visceral myopathy based on megacystis, functional bladder/gastrointestinal obstruction, or microcolon. A combination of targeted ACTG2 sequencing and exome sequencing was used. We report a molecular diagnostic rate of 64% (34/53), of which 97% (33/34) is attributed to ACTG2. Strikingly, missense mutations in five conserved arginine residues involving CpG dinucleotides accounted for 49% (26/53) of disease in the cohort. As a group, the ACTG2-negative cases had a more favorable clinical outcome and more restricted disease. Within the ACTG2-positive group, poor outcomes (characterized by total parenteral nutrition dependence, death, or transplantation) were invariably due to one of the arginine missense alleles. Analysis of specific residues suggests a severity spectrum of p.Arg178>p.Arg257>p.Arg40 along with other less-frequently reported sites p.Arg63 and p.Arg211. These results provide genotype-phenotype correlation for ACTG2-related disease and demonstrate the importance of arginine missense changes in visceral myopathy
    corecore