ESC Publications - Cambridge Univesity
Not a member yet
    1907 research outputs found

    The thermal evolution of planetesimals during accretion and differentiation: consequences for dynamo generation by thermally-driven convection.

    Get PDF
    The meteorite paleomagnetic record indicates that differentiated (and potentially, partially differentiated) planetesimals generated dynamo fields in the first 6-20 Myr after the formation of calcium-aluminium-rich inclusions (CAIs). This early period of dynamo activity has been attributed to thermal convection in the liquid cores of these planetesimals during an early period of magma ocean convection. To better understand the controls on thermal dynamo generation in planetesimals, we have developed a 1D model of the thermal evolution of planetesimals from accretion through to the shutoff of convection in their silicate magma oceans for a variety of accretionary scenarios. The heat source of these bodies is the short-lived radiogenic isotope, 26Al. During differentiation, 26Al partitions into the silicate portion of these bodies, causing their magmas ocean to heat up and introducing stable thermal stratifications to the tops of their cores, which inhibits dynamo generation. In 'instantaneously' accreting bodies, this effect causes a delay on the order of >10 Myr to whole core convection and dynamo generation while this stratification is eroded. However, gradual core formation in bodies that accrete over >0.1 Myr can minimise the development of this stratification, allowing dynamo generation from ~4 Myr after CAI formation. Our model also predicts partially differentiated planetesimals with a core and mantle overlain by a chondritic crust for accretion timescales >1.2 Myr, although none of these bodies generate a thermal dynamo field. We compare our results from thousands of model runs to the meteorite paleomagnetic record to constrain the physical properties of their parent bodies

    Global trends in novel stable isotopes in basalts: Theory and observations

    No full text
    The geochemistry of global mantle melts suggests that both mid-ocean ridge basalts (MORB) and ocean island basalts (OIB) sample lithological and temperature heterogeneities originating in both the upper and lower mantle. Recently, non-traditional stable isotopes have been suggested as a new tool to complement existing tracers of mantle heterogeneity (e.g., major and trace elements, radiogenic isotopes), because mineral- and redox-specific equilibrium stable isotope fractionation effects can link the stable isotope ratios of melts to their source mineralogy and melting degree. Here, we investigate five stable isotope systems (Mg-Ca-Fe-V-Cr) that have shown promise in models or natural samples as tracers of mantle temperature and/or lithological heterogeneity. We use a quantitative model, combining thermodynamically self-consistent mantle melting and equilibrium isotope fractionation models, to explore the behaviour of the isotope ratios of these elements during melting of three mantle lithologies (peridotite, and silica-excess and silica-deficient pyroxenites), responding to changes in mantle mineralogy, oxygen fugacity, temperature and pressure. We find that, given current analytical precision, the stable isotope systems examined here are not predicted to be sensitive to mantle potential temperature variations through equilibrium isotope fractionation processes. By contrast, source lithological heterogeneity is predicted to be detectable in some cases in the stable isotope ratios of erupted basalts, although generally only at proportions of 10% MORB-like pyroxenite in the mantle source, given current analytical precision. Magnesium and Ca stable isotopes show most sensitivity to a garnet-bearing source lithology, and Fe and Cr stable isotopes are potentially sensitive to the presence of MORB-like pyroxenite in the mantle source, although the behaviour of Cr isotopes is comparatively under-constrained and requires further work to be applied with confidence to mantle melts. When comparing the magnitude and direction of predicted equilibrium isotopic fractionation of peridotite and pyroxenite melts to natural MORB and OIB data, we find that aspects of the natural data (including the mean Mg-Ca-Fe-V isotopic composition of MORB, the range of Mg-Ca isotopic compositions seen in MORB data, the mean Mg-Ca-Cr isotopic composition of OIB, and the range of Mg-V-Cr isotopic compositions in OIB data) can be matched by equilibrium isotope fractionation during partial melting of peridotite and pyroxenite sources – with pyroxenite required even for some MORB data. However, even when considering analytical uncertainty on natural sample measurements, the range in stable isotope compositions seen across the global MORB and OIB datasets suggests that kinetic isotope fractionation, or processes modifying the isotopic composition of recycled crustal material such that it is distinct from MORB, may be required to explain all the natural data. We conclude that the five stable isotope systems considered here have potential to be powerful complementary tracers to other geochemical tracers of the source lithology of erupted basalts. However, continued improvements in analytical precision in conjunction with experimental and theoretical predictions of isotopic fractionation between mantle minerals and melts are required before these novel stable isotopes can be unambiguously used to understand source heterogeneity in erupted basalts

    Multiple Avalanche Processes in Acoustic Emission Spectroscopy: Multibranching of the Energy−Amplitude Scaling

    Get PDF
    Several physical processes can conspire to generate avalanches in materials. Such processes include avalanche mechanisms like dislocation movements, friction processes by pinning magnetic domain walls, moving dislocation tangles, hole collapse in porous materials, collisions of ferroelectric and ferroelastic domain boundaries, kinks in interfaces, and many more. Known methods to distinguish between these species which allow the physical identification of multiavalanche processes are reviewed. A new approach where the scaling relationship between the avalanche energies E and amplitudes A is considered is then described. Avalanches with single mechanisms scale experimentally as E = SiAi2. The energy E reflects the duration D of the avalanche and A(t), the temporal amplitude. The scaling prefactor S depends explicitly on the duration of the avalanche and on details of the avalanche profiles. It is reported that S is not a universal constant but assumes different values depending on the avalanche mechanism. If avalanches coincide, they can still show multivalued scaling between E and A with different S-values for each branch. Examples for this multibranching effect in low-Ni 316L stainless steel, 316L stainless steel, polycrystalline Ni, TC21 titanium alloy, and a Fe40Mn40Co10Cr10 high-entropy alloy are shown

    Size Control in the Colloidal Synthesis of Plasmonic Magnesium Nanoparticles

    No full text
    Nanoparticles of plasmonic materials can sustain oscillations of their free electron density, called localized surface plasmon resonances (LSPRs), giving them a broad range of potential applications. Mg is an earth-abundant plasmonic material attracting growing attention owing to its ability to sustain LSPRs across the ultraviolet, visible, and near-infrared wavelength range. Tuning the LSPR frequency of plasmonic nanoparticles requires precise control over their size and shape; for Mg, this control has previously been achieved using top-down fabrication or gas-phase methods, but these are slow and expensive. Here, we systematically probe the effects of reaction parameters on the nucleation and growth of Mg nanoparticles using a facile and inexpensive colloidal synthesis. Small NPs of 80 nm were synthesized using a low reaction time of 1 min and ∼100 nm NPs were synthesized by decreasing the overall reaction concentration, replacing the naphthalene electron carrier with biphenyl or using metal salt additives of FeCl3 or NiCl2 at longer reaction times of 17 h. Intermediate sizes up to 400 nm were further selected via the overall reaction concentration or using other metal salt additives with different reduction potentials. Significantly larger particles of over a micrometer were produced by reducing the reaction temperature and, thus, the nucleation rate. We showed that increasing the solvent coordination reduced Mg NP sizes, while scaling up the reaction reduced the mixing efficiency and produced larger NPs. Surprisingly, varying the relative amounts of Mg precursor and electron carrier had little impact on the final NP sizes. These results pave the way for the large-scale use of Mg as a low-cost and sustainable plasmonic material

    Pennaraptoran systematics

    No full text
    New and important pennaraptoran specimens continue to be discovered on a regular basis. Yet, with these discoveries the number of viable phylogenetic hypotheses has increased, including ones that challenge the traditional exclusive grouping of dromaeosaurids and troodontids within a monophyletic Deinonychosauria. This chapter section will cover recent efforts to address prevailing phylogenetic uncertainties and controversies, both between and within key clades, including deinonychosaurian monophyly, the phylogenetic position of anchiornithines and scansoriopterygids and the interrelationships of enantiornithines. Whilst recent discoveries mainly from Asia have created much of the latest uncertainties and controversies, brand new material, particularly from Asia, promises to rather fittingly address them. Further curatorship of long-standing phylogenetic datasets and more prevalent use of extended analytical protocols will be essential to meeting this challenge, especially for groups whose boundaries have been blurred. As it becomes increasingly difficult to study all fossil materials owing to their growing numbers and ever disparate locations, broader use of digital fossils and online character databases for character coding is acutely needed to ensure that errors arising from remote rather than first-hand scoring are reduced as far as possible, particularly at this time of rapid data accumulation. Recent taxonomic revisions and newly described taxa also present opportunities to update and revisit clade definitions, e.g., designating neotypes for reference taxa like Troodon formosus

    Insights into magma chamber processes from the relationship between fabric and grain shape in troctolitic cumulates

    Get PDF
    The strength of foliations defined by shape preferred orientation of plagioclase in troctolitic cumulates from the Layered Series of the Skaergaard intrusion, and the Rum Eastern Layered Intrusion, increases as the grains become more tabular, due either to the greater propensity of highly non-equant grains to be re-arranged by magmatic currents or tectonic disruption of poorly consolidated mush, or by the effects of a pre-existing shape preferred orientation on final grain shape in fully solidified rocks. The stratigraphic evolution of grain shape, microstructures and fabrics in the lowest 320m of the Skaergaard Layered Series records the progressive inflation of the chamber to its final size. During the earliest stages of solidification, the extent of in situ nucleation and growth on the chamber floor decreased upwards through the stratigraphy, due to the development of a thermally insulating blanket of mush on the floor. An upwards increase in foliation strength as the chamber inflated to its final size was a result of the increasing strength of convection of the bulk magma and an increasing contribution to the floor mush of crystals derived from the walls of the enlarging magma chamber. Plagioclase in the troctolites in the open-system magma chamber of the Rum Eastern Layered Intrusion is generally more equant than that in the Skaergaard intrusion, perhaps related to the slower crystal growth on the margins of the continuously replenished Rum chamber. Significant sub-solidus modification of original igneous microstructures is observed in Rum troctolites from parts of the stratigraphy recording frequent replenishment events

    Morin-type transition in 5C pyrrhotite

    Get PDF
    We report the discovery of a low temperature spin-flop transition in 5C pyrrhotite at ~155 K that is similar to those seen in hematite at 260 K and FeS (troilite) at 440 K. The 5C crystal was produced by annealing a 4C pyrrhotite crystal at 875 K, to produce a change in the vacancy-ordering scheme that developed during cooling. The 5C structure is confirmed by single crystal x-ray diffraction and the stoichiometry and homogeneity by electron microprobe and SEM BSE mapping. RUS, heat capacity and magnetisation measurements from room temperature down to 2 K are reported. The transition is marked by a steep change in elastic properties at the transition temperature, a peak in the heat capacity and weak anomalies in measurements of magnetisation. Magnetic hysteresis loops and comparison with the magnetic properties of 4C pyrrhotite suggest that the transition involves a change in orientation of moments between two different antiferromagnetic structures, perpendicular to the crystallographic c-axis at high temperatures and parallel to the crystallographic c-axis at low temperatures. The proposed structures are consistent with a group theoretical treatment that also predicts a first order transition between the magnetic structures

    The Biogeography of Coelurosaurian Theropods and Its Impact on Their Evolutionary History

    No full text
    The Coelurosauria are a group of mostly feathered theropods that gave rise to birds, the only dinosaurians that survived the Cretaceous-Paleogene extinction event and are still found today. Between their first appearance in the Middle Jurassic up to the end Cretaceous, coelurosaurians were party to dramatic geographic changes on the Earth’s surface, including the breakup of the supercontinent Pangaea, and the formation of the Atlantic Ocean. These plate tectonic events are thought to have caused vicariance or dispersal of coelurosaurian faunas, influencing their evolution. Unfortunately, few coelurosaurian biogeographic hypotheses have been supported by quantitative evidence. Here, we report the first, broadly sampled quantitative analysis of coelurosaurian biogeography using the likelihood-based package BioGeoBEARS. Mesozoic geographic configurations and changes are reconstructed and employed as constraints in this analysis, including their associated uncertainties. We use a comprehensive time-calibrated coelurosaurian evolutionary tree produced from the Theropod Working Group phylogenetic data matrix. Six biogeographic models in the BioGeoBEARS package with different assumptions about the evolution of spatial distributions are tested against geographic constraints. Our results statistically favor the DIVALIKE+J and DEC+J models, which allow vicariance and founder events, supporting continental vicariance as an important factor in coelurosaurian evolution. Ancestral range estimation indicates frequent dispersal events via the Apulian route (connecting Europe and Africa during the Early Cretaceous) and the Bering land bridge (connecting North America and Asia during the Late Cretaceous). These quantitative results are consistent with commonly inferred Mesozoic dinosaurian dispersals and continental-fragmentation-induced vicariance events. In addition, we recognize the importance of Europe as a dispersal center and gateway in the Early Cretaceous, as well as other vicariance events such as those triggered by the disappearance of land bridges

    Phylogenetic definitions for Caprimulgimorphae (Aves) and major constituent clades under the International Code of Phylogenetic Nomenclature

    Get PDF
    Phylogenetic nomenclature, a system of taxonomic nomenclature in which taxon names are defined based on phylogenetic relationships, has been widely adopted in recent decades, particularly by vertebrate palaeontologists. However, formal regulation of this taxonomic system had been non-existent until the recent implementation of the International Code of Phylogenetic Nomenclature (PhyloCode). To fulfil the requirements of the PhyloCode, we explicitly establish phylogenetic definitions that we recommended in a recent phylogenetic study on the avian taxon Caprimulgimorphae (which includes nightjars, potoos, frogmouths, swifts, hummingbirds, and others) and many of its major constituent subclades. Two new names are coined: Sedentaves (for the smallest crown clade uniting Steatornis and Nyctibiidae) and Letornithes (for the smallest crown clade uniting Podargidae and Daedalornithes). We also briefly review the fossil record and diagnostic morphological apomorphies of caprimulgimorph clades for which relevant information is available

    Metamorphic evolution of the Great Slave Lake shear zone

    Get PDF
    The Paleoproterozoic Great Slave Lake shear zone (GSLsz) is a crustal‐scale strike‐slip structure, with a total length >1000 km and a width of ~25 km, that separates the Archean Rae and Slave cratons. The range of metamorphic rocks now exposed at the surface encompasses granulite facies mylonite through to lower‐greenschist facies ultramylonite and cataclasite, providing a potential type example of fault‐zone structure in the middle and lower crust. However, the metamorphic evolution of the units remains poorly quantified, hindering detailed structural and tectonic interpretations. Here, we use phase equilibria modelling and thermobarometry to determine the metamorphic conditions recorded by pelitic, mafic, and felsic GSLsz mylonites. Samples from the entire range of granulite–greenschist facies units preserve evidence for nested clockwise pressure–temperature paths that are consistent with a single orogenic cycle. Our findings indicate that the northern Rae margin underwent pervasive crustal thickening with peak pressures in metasedimentary rocks reaching ~1.1 GPa. The crustal thermal gradient at the onset of thickening was ~650ºC GPa‐1, whereas, the final stages of equilibrium recorded by fine‐grained matrix minerals in all samples collectively define a metamorphic field gradient of ~1000ºC GPa‐1. Deformation microstructures are consistent with the main phase of dextral shear having been synchronous with or following peak metamorphism. The history of metamorphism and exhumation of the GSLsz is consistent with the Sibson‐Scholz model for shear zones, with a narrowing of the deforming zone and the progressive overprinting of higher‐grade assemblages during exhumation through shallower crustal levels

    1,089

    full texts

    4,216

    metadata records
    Updated in last 30 days.
    ESC Publications - Cambridge Univesity is based in United Kingdom
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇