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Abstract 

Visceral myopathy with abnormal intestinal and bladder peristalsis includes a clinical 

spectrum with Megacystis Microcolon Intestinal Hypoperistalsis Syndrome (MMIHS), 

and Chronic Intestinal Pseudo-Obstruction (CIPO). The vast majority of cases are caused 

by dominant variants in ACTG2; however, the overall genetic architecture of visceral 

myopathy has not been well-characterized. We ascertained 53 families, with visceral 

myopathy based on megacystis, functional bladder/gastrointestinal obstruction or 

microcolon. A combination of targeted ACTG2 sequencing and exome sequencing was 

used. We report a molecular diagnostic rate of 64% (34/53), of which 97% (33/34) is 

attributed to ACTG2. Strikingly, missense mutations in five conserved arginine residues 

involving CpG dinucleotides, accounted for 49% (26/53) of disease in the cohort. As a 

group, the ACTG2- negative cases had a more favorable clinical outcome and more 

restricted disease. Within the ACTG2-positive group, poor outcomes (characterized by 

total parenteral nutrition dependence, death or transplantation) were invariably due to one 

of the arginine missense alleles. Analysis of specific residues suggests a severity 

spectrum of p.Arg178 > p.Arg257 > p.Arg40 along with other less frequently reported 

sites p.Arg63 and p.Arg211. These results provide genotype-phenotype correlation for 
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ACTG2-related disease and demonstrate the importance of arginine missense changes in 

visceral myopathy.  

KeyWords: Megacystis-Microcolon Intestinal Hypoperistalsis, ACTG2, visceral 

myopathy, dysmotility, smooth muscle 

Introduction 

Visceral myopathy (MIM# 155310) is a rare disorder of smooth muscle dysfunction with 

phenotypes ranging from massively distended bladder requiring catheterization with 

functional intestinal dysmotility causing severe feeding intolerance to a milder 

presentation with a predominant involvement of the gastrointestinal system manifesting 

as intermittent abdominal distention and functional intestinal obstruction. Clinicians have 

characterized patients within this broad phenotypic spectrum as Megacystis Microcolon 

Intestinal Hypoperistalsis Syndrome (MMIHS), Chronic Intestinal Pseudo-Obstruction 

(CIPO), or hollow visceral myopathy. The rarity of the disease and the overlap between 

the different phenotypes have made it difficult to accurately determine the incidence and 

prevalence (Downes, Cheruvu, Karunaratne, De Giorgio, & Farmer, 2018). A nationwide 

epidemiologic survey in Japan reported CIPO prevalence of 1.0 and 0.8 cases per 

100,000 in males and females, respectively, with an incidence of 0.21 and 0.24 cases per 

100,000 (Iida, Ohkubo, Inamori, Nakajima, & Sato, 2013). In the United States, it has 

previously been estimated that approximately 100 infants with CIPO are born every year 

(Di Lorenzo, 1999). 

A number of genes have been identified underlying these phenotypes with the majority of 

molecularly diagnosed cases caused by monoallelic variants in ACTG2 resulting in 
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dominant alleles, with biallelic variants in additional smooth muscle genes underlying 

some recessive cases. 

The genetic basis of visceral myopathy remained elusive for many years. While some 

studies implicated myopathy in MMIHS/CIPO (Puri, Lake, Gorman, O'Donnell, & 

Nixon, 1983; Rolle, O'Briain, Pearl, & Puri, 2002), others suggested abnormal 

innervation (Kapur, 2003), gastrointestinal hormonal imbalance (Hammar et al., 2012; 

Taguchi et al., 1989) and perturbation of the cells of Cajal, the intrinsic intestinal 

pacemaker (Piotrowska et al., 2003) as the underlying mechanism. Evidence from mouse 

models indicated that impairment of cholinergic neurotransmission, which initiates the 

process leading to smooth muscle contraction, results in dilated bladder, and mydriasis 

(Lev-Lehman, Bercovich, Xu, Stockton, & Beaudet, 2001).  

We and others identified ACTG2 as the first single gene for the disease traits of visceral 

myopathy (Lehtonen et al., 2012), and MMIHS/CIPO (Thorson et al., 2014; Wangler et 

al., 2014). Subsequent reports, supported by functional data from mouse models, 

established the important role of ACTG2 in these disorders (Halim et al., 2016; Holla, 

Bock, Busk, & Isfoss, 2014; Klar et al., 2015; Lu et al., 2016; Matera et al., 2016; 

Milunsky, Baldwin, et al., 2017; Milunsky, Lazier, et al., 2017; Moreno et al., 2016; 

Tuzovic et al., 2015; Whittington, Poole, Dutta, & Munn, 2017). ACTG2 encodes a 

muscle actin isoform predominantly expressed in the intestinal smooth muscle (Miwa et 

al., 1991; Szucsik & Lessard, 1995) which, together with myosin, comprises the 

apparatus responsible for muscle contraction and relaxation. 
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While ACTG2 emerged as the first major causative gene, additional genes have been 

found to play a role in the pathogenesis. ACTA2 also encodes a smooth muscle actin 

gene; variation in it causes Multisystemic Smooth Muscle Dysfunction syndrome (MIM 

#613834). This Mendelian condition includes bladder hypotonicity and abnormal 

intestinal peristalsis; however, in those cases there is also significant involvement of 

vascular and ciliary smooth muscle leading to vascular aneurysms and mydriasis.  

Autosomal recessive forms of MMIHS are caused by biallelic loss-of-function variants in 

other proteins involved in actin-myosin interactions: MYH11 (myosin heavy chain) 

(Gauthier et al., 2015), MYLK (myosin light chain kinase) (Halim, Brosens, et al., 2017), 

LMOD1 (leiomodin 1, an actin-binding protein expressed primarily in vascular and 

visceral smooth muscle) (Halim, Wilson, et al., 2017) and MYL9 (regulatory myosin light 

chain) (Moreno et al., 2018). Other genes that are implicated in intestinal hypoperistalsis, 

but usually with other distinguishing phenotypic features include: genes causing 

mitochondrial disorders (TYMP, POLG); EDNRB, EDN3 and SOX10 associated with 

Waardenburg syndrome with Hirschprung disease; SGOL1; RAD21; FLNA and L1CAM.  

These studies have highlighted smooth muscle structural proteins and pathways related to 

smooth muscle function and provided mechanistic insight from case series and reports. 

Such novel gene discoveries provide further molecular insights into disease pathology, 

nevertheless heterozygous variants in ACTG2 remains the most common finding on 

molecular testing (Ravenscroft et al., 2018). Based on data from a small number of cases, 

some genotype-phenotype correlations have been proposed. In one series, three patients 

with missense mutations affecting Arg178 were found to have microcolon, while seven 

patients with Arginine substitutions at another site (Arg38, Arg148, Arg178) were not 
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(Matera et al., 2016). In another cohort of 11 subjects, the observation of severe 

phenotypes was made for individuals with mutations affecting Arg178 (Halim et al., 

2016). However, these observations were not tested statistically due to the small number 

of cases. In addition, the overall likelihood of finding specific molecular diagnoses for 

these disorders has not been well defined as most reported cases come from a subset of 

molecularly diagnosed cases. We therefore studied 53 unrelated families with visceral 

myopathy and report an allelic series. The clinical findings, molecular diagnostic rates, 

and genotype-phenotype correlations in this cohort provide new insights into the genetic 

architecture of visceral myopathy.  

METHODS 

All patients were recruited to Baylor College of Medicine (BCM) Visceral Myopathy 

Cohort. All subjects provided informed consent for the study under IRB protocol (H-

29697) at Baylor College of Medicine. Patients were recruited to the study during two 

different time intervals; the first from 1999-2001, and then from 2013 to the present. 

Patients with clinical findings of prenatal or post-natal megacystis, microcolon, intestinal 

hypomotility across a range of ages, intestinal pseudo-obstruction, prune belly syndrome 

or dependence on total parenteral nutrition (TPN) due to intestinal functional obstruction 

were ascertained and referred or recruited. Subjects were excluded if they had 

documented spina bifida, diagnosed Hirschprung’s disease or known secondary cause for 

neurogenic bladder. We have previously described 15 probands from this cohort in the 

process of uncovering ACTG2 as the causative gene (Wangler et al., 2014). In another 

family in the cohort, homozygous variants in MYLK were later identified (Halim, 
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Brosens, et al., 2017). DNA samples from these and additional probands and family 

members were isolated and stored for further studies. 

Targeted ACTG2 Sequencing 

We designed a set of primers that cover all the exons and intron-exon boundaries of the 

ACTG2 gene (Supp. Table S1). We utilized these for Targeted ACTG2 Sanger 

sequencing and for confirmation of results of research exome or external clinical exome 

and segregation studies in available family members.  

Exome Sequencing 

Genomic DNA (1 µg) was fragmented by sonication. Illumina paired-end libraries from 

genomic DNA samples were constructed (Lupski et al., 2013). Pre-capture libraries were 

pooled and hybridized in solution to the BCM-HGSC CORE exome capture design 

(Bainbridge et al., 2011) (52Mb, NimbleGen). Captured DNA fragments were sequenced 

on an Illumina HiSeq 2000 platform, producing 9-10 gigabase-pairs (Gb) of sequence for 

each personal genome and achieving an average of 95% of the targeted exome bases 

covered to an average depth of 20X or greater, with mean coverage of target bases of 

over 100X. Raw sequence reads were mapped and aligned to the GRCh37 (hg19) human 

genome reference assembly using the HGSC Mercury analysis pipeline 

(http://www.tinyurl.com/HGSC-Mercury/) (Reid et al., 2014) or the Baylor Genetics 

analysis pipeline (Liu et al., 2019).  
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Clinical Data Analysis 

Study subjects recruited after 2013 were assessed by clinician or genetic counselor co-

authors by direct history, physical exam and pedigree analysis. In some cases, subjects 

had been previously referred from centers around the world prior to 2013 in which case 

medical information was gathered from communication with health care providers or 

review of medical records after authorization for release of medical information was 

provided by the families. In addition, we asked families direct questions to verify 

information, and determine physicians and hospitals for specific health history events. 

We also utilized a clinical questionnaire completed by the patients or their families to 

collect a standard set of data including demographic information and clinical symptoms. 

This was not possible for all the subjects such that 40 of 53 cases have complete clinical 

information.  

Meta-Analysis 

We performed a review of the literature for cohorts and case reports of ACTG2-related 

visceral myopathy/MMIHS/CIPO. For each of the unrelated probands we documented 

the ACTG2 variant, presence or absence of megacystis, microcolon, any gastrointestinal 

involvement, any genitourinary involvement and the outcome. Outcomes were arbitrarily 

divided into poor (defined as dependence on total parenteral nutrition, visceral transplant 

or death in early childhood) vs. more favorable outcome (all other cases). 
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RESULTS 

Clinical Characteristics of the BCM Visceral Myopathy Cohort  

The BCM cohort includes 53 probands with detailed clinical assessment available for 40 

cases and their families. The study population consisted of 66% female and 34% male 

probands consistent with previous studies suggesting a female preponderance (Table 1, 

Supp. Table S2) (Gosemann & Puri, 2011). Mean maternal age in the cohort was 31 

years (range 22-40) and mean paternal age was 32 years (range 20-44). 

We observed prenatal or postnatal megacystis in 77.8% with bladder catheterization 

requirement in 79.4% of our cohort, and a fetal bladder diversion surgery having been 

undertaken during pregnancy in four subjects (11.4%), two of whom were recruited in the 

first interval of ascertainment and two in the more recent recruitment (Table 1, Supp. 

Figure S1A-C). Microcolon was identified in 53% of the subjects and 52.8% of the 

subjects underwent abdominal surgery in the first weeks of life with bilious emesis noted 

in the first days of life in 43.7% (Table 1, Supp. Figure S1D-F). The overwhelming 

majority of the cohort required TPN or partial parenteral nutrition at some point in life, 

we noted that 30% of the subjects were totally dependent on TPN for nutrition, while an 

additional 47.2% required partial or temporary parenteral nutrition (Table 1, Supp. 

Figure S1G). Taken together, the subjects in our cohort represented a medically complex 

population of individuals with high rates of surgical, bladder and nutritional intervention 

with similar rates as previous clinical meta-analyses of MMIHS (Gosemann & Puri, 

2011).  
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As a group, patients in the cohort had symptoms affecting both gastrointestinal (GI) and 

genitourinary (GU) systems such as megacystis and TPN dependence; however, there 

were five notable subjects (13.1%) with disease involvement apparently restricted to 

either the GI or the GU system (Supp. Figure S1H).  

We categorized a number of outcomes given the high rates of complications or medical 

procedures in the cohort. Subjects received care in different hospitals in different 

countries where medical practices could vary making surgical outcomes challenging to 

characterize. Patients with visceral myopathy can also have a number of complications 

related to previous abdominal surgery, infection of central lines, liver disease from long-

term TPN and hospital-related infections. We arbitrarily divided the cohort into 

dichotomous clinical groups defined on the basis of “poor outcomes” versus more 

“favorable outcomes” (Supp. Figure S1I).  

Molecular Diagnostic Rates 

The inheritances pattern of MMIHS varies depending on genetic cause with ACTG2 cases 

presenting as sporadic or a dominant trait (Wangler et al., 2014), but familial cases with 

consanguinity point to the recessive loci (Nakamura, O'Donnell, & Puri, 2019). In the 

present cohort, five families exhibited an apparently recessive pattern of inheritance 

where affected siblings had apparently unaffected parents (Fam10, Fam19, Fam33, 

Fam36, Fam44); consanguinity was reported in three of these cases (3/53, 5.6%). In four 

families the pedigree suggested a dominantly-inherited disease (affected child with 

affected parent; Fam13, Fam34, Fam53, Fam54). In the majority of cases (38/53, 71.7%) 

the disease was apparently sporadic (Figure 1A, Supp. Table S2).  
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Upon molecular analysis, individuals in our cohort received a molecular diagnosis of a 

pathogenic mutation in 64.1% (34/53) of cases (Figure 1B, Table 1). Novel variants 

have been submitted to ClinVar. Overall, 20 subjects were diagnosed by targeted research 

testing of ACTG2 using Sanger sequencing or targeted next-generation sequencing, and 

another 14 subjects were found to have ACTG2 variants by exome sequencing for a total 

of 33 ACTG2 positive cases (Figure 1C). In one family with apparent recessive disease 

we previously identified a pathogenic homozygous MYLK variant (Halim et al., 2016) 

Of the cases that received a molecular diagnosis, 20 were due to de novo ACTG2 

variants, consistent with the observation of the cohort that the majority of the cases 

appear sporadically, and suggesting an estimate of 37.7% (20/53) of cases of visceral 

myopathy are due to de novo ACTG2 events (Figure 1D). We noted that 26/53 (49%) of 

the cases, both de novo and inherited had ACTG2 arginine missense substitutions (Figure 

1E). For 19 families a molecular pathogenic diagnosis has not been identified to date, 

including 17 sporadic cases and two pairs of siblings. Seven of these families had 

undergone trio exome sequencing.  

Clinical Features of the ACTG2 Positive Versus Negative Cases 

In comparing the cases in our cohort testing positive for an ACTG2 pathogenic variant to 

those without we noted clinical differences. Of the 28 individuals in our cohort with 

confirmed megacystis, 24 were ACTG2-positive (85.7%), while of the eight known to not 

have megacystis, only three of eight were positive for ACTG2 (37.5%) (Figure 2A). 

These results were statistically significant (Fisher’s Exact test, p=0.0132). Similarly, 

92.3% (24/26) of the ACTG2-positive cases required bladder catheterization, compared to 
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only 37.5% (3/8) of the ACTG2 negative cases (Fisher’s Exact test, p=0.0035) (Figure 

2B). Microcolon was identified in 61.5% (16/26) of the ACTG2-positive cases, while 

only 25% (2/8) had microcolon in the ACTG2- negative cases (Figure 2C). Finally, 

abdominal surgery in the first weeks of life was performed in 57.7% (15/26) of the 

ACTG2-positive cases compared to 40% (4/10) in the ACTG2-negative cases (Figure 

2D). The differences in the frequencies of microcolon and abdominal surgery were not 

statistically significant (Fisher’s Exact test, p=0.11 and 0.4543, respectively). Taken 

together the ACTG2- positive and negative cases comprised somewhat clinically distinct 

groups, particularly in regard to the genitourinary features.  

We also noted that for each disease feature or complication classically defined in 

MMIHS (e.g. megacystis and microcolon), between 75-90% could be attributed to 

ACTG2 (Figure 3A). In addition, we noted that missense substitutions in arginine 

residues accounted for 49% of all the cases in our cohort (Figure 3B). Notably, there was 

a large difference in outcomes between the ACTG2-positive and ACTG2- negative groups 

(Figure 3C-D). Testing positive for ACTG2 in our cohort led to a 44.4% chance (12/27) 

of a patient having a poor outcome and severe disease, compared to a 16.7% chance 

(2/12) of a poor outcome in those testing negative, although these results were not 

statistically-significant (Fisher’s Exact test, p=0.1509). In aggregate, these data suggest 

stringent clinical selection of cases of severe visceral myopathy could predict high rates 

of positive ACTG2 testing (Figure 3C). Our findings demonstrate that the vast majority 

of cases with megacystis, microcolon, newborn abdominal surgery, bladder 

catheterization and poor long-term prognosis belong to an ACTG2-positive group. 
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Overall, the undiagnosed group was more clinically heterogeneous than the ACTG2-

positive group. One case had prune belly syndrome with no GI involvement (Fam38-1). 

These cases also had a number of additional features reported including multiple 

congenital anomalies (Fam31-1), developmental delays and myoclonic jerks (Fam40-1), 

symptoms resembling postural orthostatic tachycardia syndrome (POTS) and recurrent 

pancreatitis (Fam45-1), spina bifida occulta (Fam48-1) and multiple café-au-lait macules 

in 2 siblings (Fam33-1, Fam33-4).  

Recurrent Arginine Missense Mutations in ACTG2 

The pathogenic variants in our cohort were all coding missense substitutions. These 

included 17 unique variants, affecting 12 unique amino acid positions of the ACTG2 

protein (Figure 4A, Supp. Table S3). The ACTG2 gene encodes a 376 amino acid actin 

protein which is nearly identical at the amino acid level to the five other paralogs in the 

human genome (ACTG1, ACTC1, ACTA1, ACTA2, ACTB) (Supp. Figure S2). All of the 

actin proteins share 18 identical arginine residues distributed across the protein. In 

ACTG2, 13 of the 18 arginine residues are encoded by a “CGX” (CGG, CGC, CGA, 

CGU) codon with a CpG dinucleotide at that site (Figure 4B, sites in red). We observed 

five recurrent arginine sites in which multiple recurrent arginine missense substitutions 

were identified (red stars). These sites accounted for 78.7% of the ACTG2 positive cases 

and nearly 50% of the cases in our entire cohort.  

Next, we examined public databases including gnomAD and ClinVar (Harrison et al., 

2016; Lek et al., 2016) and we catalogued which of these and the other arginine sites 

have been noted to have missense substitutions. We found that the five recurrent sites 
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were all absent in gnomAD, but present in ClinVar. We also noted that p.Arg38 and 

p.Arg148 are additional arginine sites encoded by a CGX codon where subsitutions that 

are noted as pathogenic in ClinVar occur that are clearly causative for MMIHS from 

previous publications (Holla et al., 2014; Lehtonen et al., 2012; Matera et al., 2016; 

Ravenscroft et al., 2018), but interestingly missense variants at these two sites are also 

present in gnomAD (Figure 4C): p.Arg38Cys, p.Arg148Cys and p.Arg148His were each 

present in a heterozygous state with a minor allele frequency of 1/251154 (0.000004). Of 

note, we observed a total of ten stopgain ACTG2 alleles (six unique). Of these, four were 

an arginine nonsense mutation p.Arg211Ter with a minor allele frequency of 0.000017 in 

gnomAD. These findings of loss of function alleles in gnomAD but missing from clinical 

cohorts, are in line with our previous analysis that suggested that haploinsufficiency of 

ACTG2 is unlikely; indeed we had not observed these variants in our cohort (Wangler et 

al 2014).  

Our data pointed to a central and prevalent role for the ACTG2 locus in this disease 

phenotype, and to sporadic cases due to de novo events and less commonly dominant 

inherited disease. We examined the paternal ages in our cohort (Supp. Figure S3A) and 

observed a modest effect in which the average paternal age at time of birth in the families 

with a de novo ACTG2 mutation was 34 years versus 29 years in all other cases. This 

difference was statistically significant (Fisher’s Exact test, p=0.0432).  

Since the earliest efforts to apply genomics to MMIHS, consanguinity has been observed 

in some cases. Despite, the data on ACTG2 and de novo events, it was recently suggested 

that based on the rates of consanguinity that MMIHS should be considered primarily an 

autosomal recessive disorder (Nakamura et al., 2019). We therefore explored the apparent 
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recessive cases in our cohort. Parental consanguinity was reported in three families in the 

cohort with affected siblings (Fam10, Fam33 and Fam36), of which one case was found 

to harbor a homozygous variant in MYLK (Fam36) (Halim, Brosens, et al., 2017). 

Interestingly, one other nonconsanguineous case that appeared recessive with two 

affected siblings, one of whom underwent intestinal transplant, was ultimately found to 

be due to the ACTG2 p.Arg178Cys variant (Supp. Figure S3B). Significant intra-familial 

variability was observed accounting for this observation as the siblings inherited a 

pathogenic variant in ACTG2 from their mother who had been undiagnosed. Notably, she 

had prolonged labor due to uterine atony, a feature also reported in another family 

(Fam51) in the cohort as well as other cases in the literature (Klar et al., 2015; Sipponen, 

Karikoski, Nuutinen, Markkola, & Kaitila, 2009). In an additional family with multiple 

affected members (Fam34) symptoms ranged from chronic constipation with or without 

urinary tract infections to severely affected individuals requiring catheterizations and 

abdominal surgeries (Supp. Figure S4A). Ages at diagnosis ranged from the prenatal 

period to adulthood in this family. Given the wide range of intrafamilial variability, 

apparent recessive cases with affected siblings still does not exclude a dominant model 

with incomplete penetrance in the parents, and ACTG2 testing can still be useful. We also 

postulated that parental mosaicism for ACTG2 could account for these observations but 

we did not observe mosaicism in our parental samples.  

We also had previously identified a variant in ACTG2 which appeared to affect an 

alternative transcript (NC_000002.11(NM_001615.3):c.255+210C>A encoding 

p.Phe110Leu on transcript Uc010fex.1). This variant was found in Fam19 in two affected 

siblings (Supp. Figure S4B). We then found this variant in another family Fam18, in 
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which the proband and an unaffected sibling were positive for this variant. The Fam18-1 

proband was also positive for a de novo ACTG2 variant (NM_001615.3:c.770G>A; 

NM_001615.3:p.Arg257H). These data suggest the previously reported p.Phe110Leu 

allele may be a benign variant. However, an impact as a modifier or incompletely 

penetrant allele could not be ruled out (Supp. Figure S4B).  

Additional Clinical Features of ACTG2 Positive group 

The majority of individuals testing positive for ACTG2 exhibited the classic MMIHS 

phenotype including a combination of symptoms suggesting bladder and intestinal 

dysmotility. Two cases (Fam55-1, Fam57-1) presented initially with neurogenic bladder 

alone during the first months of life but later developed significant gastrointestinal 

dysmotility: Fam55-1 developed severe abdominal distension with Clostridium difficile 

infection at age 1 year and had an ileostomy performed. Fam57-1 presented with more 

severe bladder symptoms and no apparent GI dysmotility at birth, but by age four months 

she developed massive gastric distension requiring decompression by a gastric tube and 

was started on 80% parenteral nutrition. Prune belly was also seen in ACTG2 positive 

cases (Fam9, Fam16). In adult patients, features including cholecystitis, cholelithiasis, 

biliary sludge, gastric and colonic polyps, gastritis, hepatitis, nephrolithiasis and a simple 

renal cyst were reported. Developmental delays were noted in two cases: one subject with 

a p.Arg40His variant had mild initial gross motor delays (Fam49-1). Another subject with 

a p.Arg178Cys variant was born prematurely at 34 weeks. She had microcephaly, cortical 

thumbs, mild hypertonia and mild global developmental delays (Fam44-4). Chromosomal 

microarray analysis was nondiagnostic. Mydriasis was not noted in the ACTG2 positive 

subjects.  
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ACTG2 Variants and Genotype-Phenotype Correlations 

Because we observed a high proportion of arginine missense substitutions in ACTG2 in 

our cohort, we sought to study whether these alleles were associated with differences in 

clinical outcomes. We reasoned that because these particular CGX codons were sites of 

recurrent mutation that predicting clinical outcomes from these alleles would be 

particularly useful as they are highly likely to continue to be observed in new cases. 

Indeed, it has previously been suggested that specific arginine missense variants such as 

those affecting the arginine residue at position 178 (Arg178) may have a higher rate of 

microcolon or early death (Halim et al., 2016; Matera et al., 2016). In our cohort, all the 

probands with variants affecting Arg178 were TPN-dependent, and at least one of them 

had undergone a multi-organ transplant including large and small intestine, spleen, 

pancreas, part of the esophagus, left kidney and liver.  

We performed a genotype-phenotype correlation in which we compared the outcomes in 

the 33 patients in our cohort with confirmed ACTG2 missense substitutions. We divided 

the ACTG2-positive group into arginine substitution and non-arginine substitutions and 

correlated to the previously characterized poor or favorable outcome characterization 

based on transplant, TPN or disease-related mortality. We found that all the poor 

outcomes in the ACTG2-positive group came from individuals with arginine substitutions 

(Figure 5A). Those with an arginine substitution in our cohort had a 57.1% risk of death 

in childhood, TPN dependence and/or transplantation, while we found no individuals 

with non-arginine substitutions suffering these outcomes (Fisher’s Exact test, p=0.0149). 

These results demonstrate a seemingly robust genotype-phenotype correlation in which 

the most severely affected cases invariably have arginine substitutions in ACTG2.  
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Next, we examined whether our cohort compared with previously reported cases. We 

collected information from previously published ACTG2 cases and attempted the same 

genotype-phenotype analysis incorporating previously reported cases from the literature 

(Supp. Table S4). Our results were similar to those from the BCM cohort alone. We 

found that the non-arginine substitutions reported were not in association with death, 

transplant or TPN dependence. Interestingly, the arginine substitutions incorporating our 

cohort and the literature had a 63.8% (37/58) chance of poor outcome, an estimate very 

consistent with that from our cohort alone. These differences were statistically significant 

(Fisher’s Exact test p<0.0001). 

We show that the arginine substitutions in general are associated with more severe 

outcomes, but previous studies have suggested specific effects of specific mutations such 

as p.Arg178 (Halim et al., 2016; Ravenscroft et al., 2018). We also compared the 

outcome measure across each of the five recurrent arginine missense mutations (Figure 

5B). Interestingly, we observed that all 17 individuals with missense alleles affecting 

p.Arg178 had a poor outcome compared to 16/26 with a missense mutations affecting 

position p.Arg257 (Fisher’s Exact test, p=0.01) (Figure 5C). For missense substitutions 

affecting residues at positions 40, 63 and 211 there were too few cases (two each) to 

assess. We did observe that cases affecting an arginine residue at position 40 (p.Arg40) 

trended toward a more favorable outcome (6/8). We also examined identification of 

microcolon, and found a striking difference between individuals with p.Arg178 variants 

versus p.Arg257. Out of 20 individuals with p.Arg178, nineteen were found to have 

microcolon, while microcolon was reported in only five out of twenty with p.Arg257 

(Fisher’s Exact test p<0.0001) (Supp. Figure S5). In summary, visceral myopathy 
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represents a spectrum of severity and there is a robust genotype-phenotype correlation, 

ACTG2-positive cases are more likely to be severe cases than ACTG2-negative ones, 

arginine missense substitutions are more severe than non-arginine missense alleles. 

Finally, the recurrent arginine alleles impacting p.Arg178 are most severe as a group, 

followed by p.Arg257, then p.Arg40 with insufficient numbers to conclude on other 

arginine substitutions. These data demonstrate that these arginine missense substitutions 

are the primary determinants of the amount and severity of disease in our cohort.  

Discussion 

In this study we utilize a large cohort of 53 families with megacystis, microcolon, 

intestinal hypoperistalsis syndrome (MMIHS) to demonstrate that a set of recurrent 

missense substitutions affecting arginine residues account for the majority of cases. We 

apply a combination of targeted gene sequencing and exome sequencing to show that 

ACTG2 testing has a high diagnostic yield in this clinical population. This is particularly 

true in more severe cases of MMIHS. In addition, we provide evidence for a genotype-

phenotype correlation within ACTG2-positive cases and show that the recurrent missense 

substitutions affecting arginine residues are responsible for cases of MMIHS with poor 

outcomes. Our results have both diagnostic significance for clinical molecular studies of 

patients with MMIHS, as well as prognostic and genetic counseling implications.  

One of the key insights of our study is the central role that ACTG2 mutations and 

particularly arginine missense substitutions play in this spectrum of disease. Previously, 

evidence from some cohorts had also pointed to this predominant role for this locus in 

MMIHS (Ravenscroft et al., 2018), however others have suggested that MMIHS is 
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mostly an autosomal recessive disorder and that consanguinity is a major genetic risk 

factor (Nakamura et al., 2019), and indeed a number of recessive loci have been 

described (Gauthier et al., 2015; Halim, Brosens, et al., 2017; Halim, Wilson, et al., 2017; 

Moreno et al., 2018). Our cohort included four families with affected siblings and three 

with consanguinity, but interestingly, one of these cases was ultimately explained by 

dominant inheritance of an ACTG2 variant with incomplete penetrance in the mother. We 

did perform exome sequencing on 17 of the 19 undiagnosed cases in our cohort aimed at 

identifying additional recessive loci, of which one family was found to have a 

homozygous MYLK variant (Halim, Brosens, et al., 2017). However, in our cohort these 

appear to be quite rare, and it was striking to observe more cases in the cohort that affect 

one of the five recurrent arginine substitutions (26/53), and ACTG2 in general (33/53), 

than all those that remain undiagnosed (19/53). 

We also observed a wide range of phenotypic severity in our ACTG2- positive cases, 

ranging from the most severe to older individuals with lifetime abdominal discomfort but 

no firm diagnosis. Our data therefore suggest ACTG2 testing should be considered in a 

much wider range of clinical conditions affecting gastrointestinal or genitourinary 

function. While exome sequencing would seem most advantageous given the ability to 

detect all the known MMIHS loci, ACTG2 targeted testing could be a reasonable 

alternative in some clinical settings, and nearly half of the cases can be diagnosed by 

sequencing five specific CpG dinucleotides within ACTG2.  

These observations also provide a greater context for understanding the recurrent arginine 

missense substitutions in ACTG2. In our larger cohort we saw an obvious impact on 

severity of disease for cases affecting p.Arg178 and p.Arg257 with even greater severity 
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in the former group. Of the 18 encoded arginine residues within the ACTG2 gene, 13 are 

at a CpG dinucleotide site. Of these, six are found to be sites of missense substitution 

within gnomAD database. Interestingly, two of these six sites are listed in ClinVar as 

pathogenic variants, p.Arg38 and p.Arg148. One possible interpretation is that these two 

sites are associated with less severe disease. Indeed in our cohort we observed wide 

interfamilial variability for a p.Arg40His variant. With our larger cohort and examining 

other published cases we were able to suggest a severity spectrum for these specific sites 

with p.Arg178 and p.Arg257 accounting for most of the severe cases and p.Arg40 with 

more mixed severity. With the information from gnomAD, an allelic series for severity 

spectrum for these specific alleles could be proposed with 

p.Arg178>p.Arg257>p.Arg40>p.Arg38 and p.Arg148. Whether p.Arg63 and p.Arg211 

also fall into this less severe category will await further studies.  

Regardless of the rates of complications within each group, patients with any severity of 

visceral myopathy face difficult medical challenges and the absence of transplantation or 

lifetime TPN dependence does not reduce the tremendous impact that visceral myopathy 

can have on quality of life, severe medical complications or costly and complex medical 

care. Some individuals in our cohort did undergo transplant, but then had good outcomes 

after their intervention, therefore our data cannot provide an overall prognosis. Instead we 

used TPN dependence, or transplantation as a proxy for gastrointestinal severity. While 

those with a negative ACTG2 sequencing result seem less severe as a group according to 

these measures, a number of severe cases are identified in this cohort. Likewise, while 

ACTG2 positive cases are more likely to have a severe phenotype, individual cases within 

this group can be very mildly impacted. Our results are limited to our own cohort and 
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should not be interpreted as predictive for other cases, particularly with negative ACTG2 

results as other genetic factors could impact these cases. Conversely, while nearly all the 

most severe disease occurred in individuals with arginine substitutions, a number of 

individuals with arginine substitutions can have milder phenotypes. Whether additional 

modifier loci could impact severity remains to be determined. In addition, other variants 

in ACTG2 itself could also impact differences in severity. For example, we observed a 

p.Phe110Leu variant affecting an alternate transcript (Uc010fex.1) in two siblings with 

comparatively mild GI disease. We then observed this same variant in another family, in 

which the proband had a de novo p.Arg257 missense allele. Whether this allele could 

secondarily impact severity remains to be determined.  

Our study had some inherent limitations. Our ascertainment, as for any rare disease 

cohort is susceptible to selection bias as we primarily relied on referral to BCM from co-

authors or external researchers or clinicians. With clinical ACTG2 testing now available, 

our study represented families interested in genetic research and seen at academic centers 

which likely selected for more severe cases. We also have recruited individuals over two 

periods of time, from 1999-2001 and then from 2013 to present. Subjects were referred 

for fetal megacystis, microcolon, functional gastrointestinal or functional bladder 

obstruction. In addition, the management of these patients could vary with surgical and 

medical interventions that could complicate the picture of severity. Other groups have 

suggested that very specific clinical designations (such as CIPO with megacystis) need to 

be applied (Matera et al., 2016) and we did not categorize our cases according to these 

clinical designations for analysis purposes. While this might have some advantages, in 

examining our cohort, we observed subjects with the same mutation who can be labeled 
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with different clinical designations such as MMIHS, CIPO and hollow visceral myopathy 

by different providers, and in the absence of specific clinical diagnostic criteria, we chose 

to recruit subjects with a range of phenotypes and then analyze according to clinical 

features. While this ascertainment issue is inherent to our study design, it primarily led to 

the inclusion of a number of cases that did not meet strict criteria for MMIHS or CIPO 

and who often ultimately had non-diagnostic molecular studies. This bias would therefore 

lead us to underestimate the impact of ACTG2 in MMIHS/CIPO, which actually 

strengthens our conclusion that ACTG2, and not recessive loci as others have proposed 

(Nakamura et al., 2019), is the primary genetic factor in MMIHS. Indeed, in a highly 

clinically selected cohort it is possible that the rate of ACTG2 positive cases could be 

even higher than 60%. Despite having access to 53 families with this rare condition, our 

numbers still did not allow sufficient power to compare most of the specific mutations 

and additional recruitment will be needed to further study this. Nonetheless, we propose a 

severity spectrum based on our observations in which ACTG2 positive cases are more 

likely to be severe than ACTG2-negative, arginine missense substitutions are more 

common and more severe within the ACTG2 positive group and we propose an arginine 

severity spectrum (p.Arg178>p.Arg63>p.Arg257 >p.Arg40>p.Arg211, p.Arg38 and 

p.Arg148) (Table 2).  

In conclusion, visceral myopathy represents a spectrum of clinical severity due to smooth 

muscle myopathy. We provide an effort to overlay this clinical severity spectrum with a 

molecular classification. In the future, providing classes such as “ACTG2-positive” 

versus “ACTG2-negative” and “p.Arg178” versus “p.Arg40” can help apply molecular 

methods to aid in the classification of a variable set of phenotypes. In addition, testing the 
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ACTG2 gene by exome or targeted testing is clearly a promising approach to providing 

better genetic counseling and diagnosis to patients with symptoms ranging from 

newborns with microcolon to adults with longstanding gastrointestinal discomfort.  
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Figures 

Figure 1 – Molecular characterization of the cohort. A – Apparent patterns of 

inheritance in the BCM Visceral Myopathy Cohort. Blue represents sporadic cases in the 

family. Brown represents families with multiple affected members over at least 2 generations 

suggesting a dominant inheritance pattern. Orange represents families with affected siblings 

born to asymptomatic parents suggesting a recessive pattern of inheritance. Red represents 

unknown pattern of inheritance. B – Overall Molecular Diagnosis Rates in the BCM Visceral 

Myopathy Cohort. Blue represents cases with a molecular diagnosis. Orange represents cases 

without a molecular diagnosis. C – Number of cases diagnosed by different molecular strategies 

(exome versus targeted testing). D – Inheritance patterns observed in the cohort. Red represents 

de novo ACTG2 cases. Purple represents ACTG2 cases with unknown pattern of inheritance. 

Blue represents MYLK (autosomal recessive). Orange represents cases lacking a molecular 
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diagnosis. E – Variant types in the BCM cohort. Red represents missense variants in ACTG2 

affecting Arginine residues. Purple represents all other ACTG2 variants. Blue represents 

variants in MYLK. Orange represents undiagnosed cases. 
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Figure 2 – Clinical features in the ACTG2 positive versus negative cases. A, B – 

Genitourinary features (megacystis, A, bladder decompression/catheterization, B). Red 

represents cases found to harbor ACTG2 pathogenic variants. Orange represents cases without 

pathogenic variants in ACTG2. C, D – Gastrointestinal features (microcolon, C, abdominal 

surgery in the first weeks of life, D). Brown represents cases with inherited ACTG2 variants or 

variants with unknown inheritance pattern. Red represents cases found to harbor de novo 

ACTG2 pathogenic variants. Orange represents cases without pathogenic variants in ACTG2.  
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Figure 3 – Burden of disease attributed to ACTG2. A – Proportion of disease complications 

(including megacystis, fetal bladder procedure, bilious emesis, abdominal surgery in the first 

weeks of life, microcolon, abnormal gastrointestinal motility study and need for bladder 

catheterization) that is attributed to all ACTG2 cases, ACTG2 de novo cases and ACTG2 

negative cases. B – Proportion of cases with arginine variants (blue), all other molecularly 

solved cases (light blue) and cases lacking a molecular diagnosis (orange) in the BCM cohort. C 

– Overall outcomes in the cohort. Poor outcome is defined as death in early childhood, 

dependence on total parenteral nutrition or cases undergoing visceral transplant. Favorable 

outcome is defined as lacking these features. Brown represents proportion attributed to ACTG2 

inherited cases or of unknown inheritance. Red represents ACTG2 de novo cases. Orange 

represents ACTG2 negative cases. D – Disease severity in the ACTG2 positive versus ACTG2 

negative. Red represents poor outcomes defined as above. Blue represents more favorable 

outcomes. 
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Figure 4 – ACTG2 variants. A – ACTG2 variants in the BCM cohort. Bars represent 

number of probands with a variant at each position shown (e.g. P39 indicates proline at position 

39 or p.Pro39). The amino acid change is indicated on the graph. B – Arginine residues shown 

on the ACTG2 exon structure. Red labels indicate sites encoded by a “CGX” codon (CpG 

dinucleotides). Blue labels indicate all other Arginine residues. Red stars indicate a recurrently-

mutated site. Positions of the arginine residues are labeled (e.g. R40H/C indicates p.Arg40His 

and p.Arg40Cys). C – Arginine missense variants in public human databases (GnomAD and 

Clinvar). Black filled double circles in gnomAD indicate presence of the allele at Minor allele 

frequency (MAF) >0 in the database. Black dots represent pathogenic or likely pathogenic 

variants in ClinVar. Red boxes represent positions encoded by CpG dinucleotides. Blue boxes 

represent all other Arginine variants. Red stars indicate recurrent pathogenic variants in our 

cohort, all present in ClinVar and absent from GnomAD. Black stars indicate Arginine missense 

alleles that are present in both ClinVar as pathogenic or likely pathogenic variants in ClinVar 

which are also present at MAF>0 in GnomAD.  
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Figure 5 – Genotype-phenotype correlations for ACTG2 Arginine missense variants. 

Positions of the arginine residues are labeled (e.g. R40 indicates arginine at position 40 or 

p.Arg40). A,B – Outcomes of Arginine versus non-Arginine missense variants in the BCM 

cohort (A) and meta-analysis incorporating cases from the BCM cohort and cases from the 

literature (B). Red bars represent poor outcome defined as death in early childhood, total 

parenteral nutrition dependence and patient undergoing visceral transplant for intestinal 

dysmotility. Blue bars represent cases lacking these features. C – Outcomes of specific Arginine 

missense variants. Red bars represent poor outcome defined as above. Blue bars represent more 

favorable outcomes lacking these features.  
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Table 1 – BCM Visceral Myopathy Cohort overview 

 

All 

N/Total (%)  

All ACTG2 

N/Total (%) 

ACTG2 Negative 

N/Total (%) 

Demographics    

Number of Probands 53 33 20 

Sex 

 Male 

 Female 

16/40 (40) 13/28 (46.4) 3/12 (25) 

24/40 (60) 15/28 (53.6) 9/12 (75) 

Clinical Features    

 GU Features    

 Megacystis 28/36 (77.8) 24/27 (89) 4/9 (44.4) 

 Fetal Bladder Procedure 4/35 (11.4) 3/27 (11.1) 1/8 (12.5) 

 Cath or Vesicostomy 27/34 (79.4) 24/26 (92.3) 3/8 (37.5) 

 GI Features    

 Microcolon 18/34 (52.9) 16/26 (61.5) 2/8 (25) 

 Bilious Emesis 15/32 (46.8) 13/24 (54.2) 2/8 (25) 

 TPN Dependence 

 Total 

11/36 (30.5) 

17/36 (47.2) 

9/27 (33.3) 

16/27 (59.2) 

2/9 (22) 

1/9 (11) 
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 Partial 

 Minimal 

8/36 (22.2) 2/27 (7.4) 6/9 (67) 

 Abdominal Surgery 19/36 (52.7) 15/26 (57.7) 4/10 (40) 

 GI + GU involvement 33/38 (86.8) 28/28 (100) 5/10 (50) 

N indicates number of cases. Total represents cases with complete clinical 
information. Cath – bladder catheterization. GI – gastrointestinal. GU – 
genitourinary.  

Table 2 Genotype Phenotype Correlation for Visceral myopathy 

Group  Inheritance Phenotypes 

Outco
mes 

Observ
ed 

ACTG2:p
.Arg178 

De novo or 
dominant 
inherited 

MMIHS-Most severe neonatal presentation 
with microcolon 

High 
rates of 
mortalit
y and 

transpla
ntation 

ACTG2:p
.Arg257 

De novo or 
dominant 
inherited 

MMIHS or CIPO. Typically Severe neonatal 
presentation usually without microcolon 

and more variability  

High 
rates of 
mortalit
y and 

transpla
ntation 

ACTG2:p
.Arg40 

De novo or 
dominant 
inherited 

MMIHS or CIPO. Severity range and more 
moderate or mild cases than groups above 

Modera
te to 
high 

rates of 
mortalit
y and 

transpla
ntation 

ACTG2:O De novo or MMIHS or CIPO. Severity range and more Modera
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ther Arg dominant 
inherited 

moderate or mild cases than groups above te rates 
of 

mortalit
y and 

transpla
ntation 

Non-Arg 
ACTG2 

De novo or 
dominant 
inherited 

MMIHS or CIPO. Severity range and more 
moderate or mild cases than groups above 

Modera
te to 
high 

rates of 
mortalit
y and 

transpla
ntation 

ACTG2 
negative 

Sporadic or 
ultra-rare 
recessive 

Less severe as a group than ACTG2 positive, 
but some severe cases 

Low 
rates of 
mortalit
y and 

transpla
ntation 
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