96 research outputs found
Dissipation in ferrofluids: Mesoscopic versus hydrodynamic theory
Part of the field dependent dissipation in ferrofluids occurs due to the
rotational motion of the ferromagnetic grains relative to the viscous flow of
the carrier fluid. The classical theoretical description due to Shliomis uses a
mesoscopic treatment of the particle motion to derive a relaxation equation for
the non-equilibrium part of the magnetization. Complementary, the hydrodynamic
approach of Liu involves only macroscopic quantities and results in dissipative
Maxwell equations for the magnetic fields in the ferrofluid. Different stress
tensors and constitutive equations lead to deviating theoretical predictions in
those situations, where the magnetic relaxation processes cannot be considered
instantaneous on the hydrodynamic time scale. We quantify these differences for
two situations of experimental relevance namely a resting fluid in an
oscillating oblique field and the damping of parametrically excited surface
waves. The possibilities of an experimental differentiation between the two
theoretical approaches is discussed.Comment: 14 pages, 2 figures, to appear in PR
Hamiltonian Theory of the Composite Fermion Wigner Crystal
Experimental results indicating the existence of the high magnetic field
Wigner Crystal have been available for a number of years. While variational
wavefunctions have demonstrated the instability of the Laughlin liquid to a
Wigner Crystal at sufficiently small filling, calculations of the excitation
gaps have been hampered by the strong correlations. Recently a new Hamiltonian
formulation of the fractional quantum Hall problem has been developed. In this
work we extend the Hamiltonian approach to include states of nonuniform
density, and use it to compute the excitation gaps of the Wigner Crystal
states. We find that the Wigner Crystal states near are
quantitatively well described as crystals of Composite Fermions with four
vortices attached. Predictions for gaps and the shear modulus of the crystal
are presented, and found to be in reasonable agreement with experiments.Comment: 41 page, 6 figures, 3 table
Domain wall formation and spin reorientation in finite-size magnetic systems
We investigate the formation of stable one-dimensional N\'eel walls in a
ferromagnetic slab with finite thickness and finite width. Taking into account
the dipolar, the exchange and the uniaxial anisotropic crystalline field
interactions, we derive an approximative analytical self-consistent expression
that gives the wall width in terms of ratios between the three different energy
scales of the problem. We also show that, even when the crystalline anisotropy
does not favour the formation of domain walls, they can yet be formed due to
the dipolar interaction and the finiteness of the system. Moreover, using a
Stoner-Wohlfarth approach, we study the magnetization reorientation inside the
domains under the action of an external magnetic field and obtain the
respective hysteresis loops, showing that their shapes change from squared to
inclined as the width of the slab varies. Finally, we discuss possible
applications of this model to describe qualitatively some recent experimental
data on thin films of MnAs grown over GaAs substrates.Comment: 11 pages, 10 eps figure
Response to Lawrence DJ: The global summit on the efficacy and effectiveness of spinal manipulative therapy for the prevention and treatment of non-musculoskeletal disorders: A systematic review of the literature
Thank you for the opportunity to respond to the Letter to the Editor by Dana J. Lawrence. In his letter, Lawrence states that the results of our systematic review may be due to bias. However, he does not adequately substantiate his claims..
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
- …