448 research outputs found
Multiple abiotic and biotic drivers of long-term wood decomposition within and among species in the semi-arid inland dunes:A dual role for stem diameter
Litter decomposition in sunny, semi-arid and arid ecosystems is controlled by both biotic factors including litter traits and abiotic factors including UV light, but for wood decomposition it still remains uncertain which of these environmental factors are the predominant controls among different woody species. In these dry ecosystems, it is likely that the stem diameter and spatial position of the dead wood are of particular importance especially where wood can be buried versus exposed due to substrate displacement by wind. Here we focus on the fact that stem diameter can affect decomposition rates both via the relative surface exposure to sunlight or soil and via higher resource quality of narrower stems to decomposers. In a field manipulation experiment, we investigated the relative importance of litter position (sand burial vs. surface vs. suspended above the surface), UV radiation (block versus pass) and stem diameter class (<2, 2–4, 4–8, 8–13 and 13–20 mm) on the mass loss of woody litters of four shrub species in an inland dune ecosystem in northern China. We found that after 34 months of in situ incubation, the mass loss of buried woody litters was three times faster than those of suspended and surface woody litters (53.5 ± 2.7%, 17.0 ± 1.0% and 14.4 ± 1.2%, respectively). In surface and suspended positions, litter decomposition rates were almost equally low and most mass loss was during the first 2 years, when bark was still attached and UV radiation had no significant effect on woody litter mass loss. These findings suggest that sand burial is the main environmental driver of wood decomposition via its control on microbial activity. Moreover, wood N and diameter class were the predominant factors driving woody litter decomposition. A key finding was that wider stems had slower litter decomposition rates not only directly (presumably via greater relative surface exposure) but also indirectly via their higher wood dry matter content or lower wood N; these effects were modulated by litter position. Our findings highlight a dual role of stem diameter on wood decomposition, that is, via relative surface exposure and via wood traits. The accuracy and confidence of global carbon cycling models would be improved by incorporating the different effects of stem diameter on woody litter decomposition and below-ground wood decomposition processes in drylands
First-principles study of the structural energetics of PdTi and PtTi
The structural energetics of PdTi and PtTi have been studied using
first-principles density-functional theory with pseudopotentials and a
plane-wave basis. We predict that in both materials, the experimentally
reported orthorhombic phase will undergo a low-temperature phase
transition to a monoclinic ground state. Within a soft-mode framework,
we relate the structure to the cubic structure, observed at high
temperature, and the structure to via phonon modes strongly
coupled to strain. In contrast to NiTi, the structure is extremely close
to hcp. We draw on the analogy to the bcc-hcp transition to suggest likely
transition mechanisms in the present case.Comment: 8 pages 5 figure
Evidence for and phases in the morphotropic phase boundary region of : A Rietveld study
We present here the results of the room temperature dielectric constant
measurements and Rietveld analysis of the powder x-ray diffraction data on
(PMN-PT) in the composition range
to show that the morphotropic phase boundary (MPB)
region contains two monoclinic phases with space groups Cm (or type) and
Pm (or type) stable in the composition ranges and
, respectively. The structure of PMN-PT in the
composition ranges 0.26, and is found to be
rhombohedral (R3m) and tetragonal (P4mm), respectively. These results are
compared with the predictions of Vanderbilt & Cohen's theory.Comment: 20 pages, 11 pdf figure
Profiling the tyrosine phosphoproteome of different mouse mammary tumour models reveals distinct, model-specific signalling networks and conserved oncogenic pathways
Introduction
Although aberrant tyrosine kinase signalling characterises particular breast cancer subtypes, a global analysis of tyrosine phosphorylation in mouse models of breast cancer has not been undertaken to date. This may identify conserved oncogenic pathways and potential therapeutic targets.
Methods
We applied an immunoaffinity/mass spectrometry workflow to three mouse models: murine stem cell virus-Neu, expressing truncated Neu, the rat orthologue of human epidermal growth factor receptor 2, Her2 (HER2); mouse mammary tumour virus-polyoma virus middle T antigen (PyMT); and the p53?/? transplant model (p53). Pathways and protein¿protein interaction networks were identified by bioinformatics analysis. Molecular mechanisms underpinning differences in tyrosine phosphorylation were characterised by Western blot analysis and array comparative genomic hybridisation. The functional role of mesenchymal¿epithelial transition factor (Met) in a subset of p53-null tumours was interrogated using a selective tyrosine kinase inhibitor (TKI), small interfering RNA (siRNA)¿mediated knockdown and cell proliferation assays.
Results
The three models could be distinguished on the basis of tyrosine phosphorylation signatures and signalling networks. HER2 tumours exhibited a protein¿protein interaction network centred on avian erythroblastic leukaemia viral oncogene homologue 2 (Erbb2), epidermal growth factor receptor and platelet-derived growth factor receptor ?, and they displayed enhanced tyrosine phosphorylation of ERBB receptor feedback inhibitor 1. In contrast, the PyMT network displayed significant enrichment for components of the phosphatidylinositol 3-kinase signalling pathway, whereas p53 tumours exhibited increased tyrosine phosphorylation of Met and components or regulators of the cytoskeleton and shared signalling network characteristics with basal and claudin-low breast cancer cells. A subset of p53 tumours displayed markedly elevated cellular tyrosine phosphorylation and Met expression, as well as Met gene amplification. Treatment of cultured p53-null cells exhibiting Met amplification with a selective Met TKI abrogated aberrant tyrosine phosphorylation and blocked cell proliferation. The effects on proliferation were recapitulated when Met was knocked down using siRNA. Additional subtypes of p53 tumours exhibited increased tyrosine phosphorylation of other oncogenes, including Peak1/SgK269 and Prex2.
Conclusion
This study provides network-level insights into signalling in the breast cancer models utilised and demonstrates that comparative phosphoproteomics can identify conserved oncogenic signalling pathways. The Met-amplified, p53-null tumours provide a new preclinical model for a subset of triple-negative breast cancers
Large-Scale Production of LGR5-Positive Bipotential Human Liver Stem Cells
Background and Aims: The gap between patients on transplant waiting lists and available donor organs is steadily increasing. H
Unbound states in quantum heterostructures
We report in this review on the electronic continuum states of semiconductor Quantum Wells and Quantum Dots and highlight the decisive part played by the virtual bound states in the optical properties of these structures. The two particles continuum states of Quantum Dots control the decoherence of the excited electron – hole states. The part played by Auger scattering in Quantum Dots is also discussed
Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector
The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015
Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context.
Methods: We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI).
Findings: Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa.
Interpretation: Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden.
Funding: Bill & Melinda Gates Foundation
- …