59 research outputs found

    Recycling of the Proterozoic crystalline basement in the Coastal Block (Moroccan Meseta): New insights for understanding the geodynamic evolution of the northern peri-Gondwanan realm

    Get PDF
    Detrital zircon age spectra from the siliciclastic rocks of the Lalla Mouchaa Calcschists and El Jadida Dolomitic formations (the Coastal Block of the Moroccan Meseta) are dominated by Paleoproterozoic and Ediacaran ages. The provenance of these two formations is a composite Proterozoic crystalline basement. El Jadida rhyolite (584.2 ± 4.8 Ma) represents the Ediacaran crystalline basement of the El Jadida dome. El Jadida rhyolite is unconformably overlain by the microbreccia, arkosic sandstone and dolostone of the El Jadida Dolomitic Formation with a maximum depositional age of ca. 539 Ma (Lower Cambrian). Detrital zircon-age spectra from El Jadida Dolomitic Formation (ca. 583–582 Ma) suggest direct recycling of El Jadida rhyolite as an exclusive original primary source. However, in the Western Rehamna massif, detrital zircon-age spectra from pre-Middle Cambrian microbreccia and arkosic sandstone of the Lalla Mouchaa Calcschists Formation (ca. 2.05–2.03 Ga) indicate exclusive recycling of the ca. 2.05 Ga-aged crystalline basement rocks (original primary source). Detrital zircon contents of the siliciciclastic rocks from these two formations of the Coastal Block are consistent with derivation from either Eburnian (Paleoproterozoic) or Cadomian/Pan-African (Ediacaran) igneous rocks. The discovery of this composite Proterozoic crystalline basement in the Moroccan Meseta stresses that Cadomian/ Pan-African magmatic arcs were built on an Eburnian basement in a paleoposition close to the West African craton, as part of the northern peri-Gondwanan realm

    CONSUMPTION ANALYSIS OF METFORMIN, SULFONYLUREAS, AND OTHER ANTIDIABETICS DRUGS IN MOROCCO (1991-2005)

    Get PDF
    Objective: Type 2 Diabetes is one of the chronic diseases with a high prevalence and consequently a substantial socio-economic burden in Arab countries. In this paper, we evaluated the antidiabetic drugs consumption in Morocco during the period of 1991 to 2005, drug classes used and the effect of major studies on the consumption of the biguanides.Methods: We used sales data from the subsidiaries of the Intercontinental Marketing Service Health. The consumption volume was converted to Defined Daily Dose (DDD).Results: During 1991-2005 antidiabetic drugs consumption increased from 1.37 to 4.22 DDD/1000 inhabitants/day. In 2005 the sulfonylureas were the most consumed 2.96 DDD/1000 inhabitants/day) followed by the Biguanides (1.06 DDD/1000 inhabitants/day) and glinides 0.1 DDD/1000inhabitants/day. The largest consumption share in volume was held by sulfonylureas 72.22%, followed by the biguanides 22.22%.Conclusion: This study documents progressive changes in the consumption of antidiabetic's between 1991-2005 in Morocco. However, the significant increase in the utilization of antidiabetic's drugs is not the result of increased adherence but of increased patient number, since the use of metformin as first line therapy was still suboptimal and influenced by different studies as the Campbell and UKPDS study.Â

    SIMPLE HPLC-UV METHOD FOR DETERMINATION OF METFORMIN IN HUMAN PLASMA AND ERYTHROCYTES APPLICATION TO THERAPEUTIC DRUG MONITORING

    Get PDF
    Objective: The aim of this study was to develop a simple, rapid, efficient, cost effective and reproducible, stability indicating reverse phase high performance liquid chromatography method (RP-HPLC) for dosage of metformin in human plasma and erythrocytes. Methods: In this method, the plasma or erythrocyte proteins were precipitated using Perchloric acid: acetonitrile (50 % v/v) mixture and the supernatant liquid were injected into the HPLC system. The separation was achieved with a symmetry C8 column with the mobile phase containing 10 % water and 90 % sodium dihydrogen phosphate buffer (5.8 mM), the pH was adjusted to 3.8 with Phosphoric acid. The temperature was elevated to 25 °C. The detection was done by a UV detector at 232 nm. Results: The retention time was observed at around 4.412 min for metformin and 6.022 for lansoprazole an internal standard (IS). The response was linear over a range of 2-32µg ml-1, the coefficient of determination (r²) was found to be (r² =0. 9988). The lowest limit of quantification and detection was 0.1 µg/ml and 0.3 µg/ml respectively. No endogenous substances were found to interfere with the peaks of the drug. The intra-day and inter-day coefficient of variations was 2.1 % or less for all the selected concentrations. The relative errors at all the studied concentrations were 3.5 % or less. Conclusion: The HPLC method described in this article was simple, selective, reproducible, linear, and precise, it can be applied for therapeutic drug monitoring of metformin in human plasma and erythrocytes

    Potential of doubled-haploid lines and localization of quantitative trait loci (QTL) for partial resistance to bacterial leaf streak (Xanthomonas campestris pv. hordei) in barley

    Get PDF
    Genetic variability for partial resistance to bacterial leaf streak in barley, caused by Xanthomonas campestris pv. hordei, was investigated in 119 doubled-haploid lines (DH) developed by the Hordeum bulbosum method from the F1 progeny of the cross between two cultivars, ‘Morex’ (resistant) and ‘Steptoe’ (susceptible). Two experiments were undertaken in a randomized complete block design with three replicates, in a controlled growth chamber. Twenty seeds per replicate were planted in plastic containers (60×40×8 cm) containing moistened vermiculite. At the two-leaf stage seedlings were inoculated with an Iranian strain of the pathogen. Genetic variability was observed among the 119 DH lines for partial resistance to the disease. Some DH lines were significantly more resistant than ‘Morex’ (resistant parent) to bacterial leaf streak. Genetic gain in percentage of resistant parent for 5% of the selected DH lines was significant (47.70% and 33.72% in the first and the second experiment, respectively). A QTL analysis of bacterial leaf streak resistance showed that three QTLs were detected on chromosomes 3 and 7. Multilocus allelic effects of the three QTLs account for almost 54% of the mean difference between the parents and nearly 30% of the phenotypic variation of the trait in the mean experiment. The resistance locus on chromosome 3, near ABG377, apprears to be a major gene

    Global, regional, and national burden of colorectal cancer and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Funding: F Carvalho and E Fernandes acknowledge support from Fundação para a Ciência e a Tecnologia, I.P. (FCT), in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy i4HB; FCT/MCTES through the project UIDB/50006/2020. J Conde acknowledges the European Research Council Starting Grant (ERC-StG-2019-848325). V M Costa acknowledges the grant SFRH/BHD/110001/2015, received by Portuguese national funds through Fundação para a Ciência e Tecnologia (FCT), IP, under the Norma Transitória DL57/2016/CP1334/CT0006.proofepub_ahead_of_prin

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries(1,2). However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world(3) and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health(4,5). However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular riskchanged from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million-4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.Peer reviewe

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks
    corecore