22 research outputs found

    Perspectivas do ensino de Geociências

    Get PDF
    The teaching of Science was incorporated into school curricula only in the nineteenth century. In Imperial Brazil, the teaching of the natural sciences was incipient, although, since the creation of the Colégio Pedro II in 1837, Science was already part of the curriculum of secondary education. But only in the second half of the last century the earliest courses in Geosciences (Geology, Geophysics, Meteorology, and Oceanography) began to be created. Currently, there are courses in these modalities across the country. However, there are serious obstacles for teaching to evolve in keeping with the current needs of the professional market and the trends imposed by technological advances. In this work, we analyze obstacles and professional gaps in Higher Education, and highlight some educational practices capable of improving learning and which could be universalized. It is no longer possible to put off the expansion of the area of Geosciences in teacher training and qualification courses for Basic Education. This article brings together some essential factors to achieve this goal.O ensino de Ciências foi incorporado aos currículos escolares somente no século XIX. No Brasil-Império o ensino das Ciências Naturais era incipiente, embora ciências já fizessem parte do currículo do ensino secundário desde a criação do Colégio Pedro II, em 1837. Os primeiros cursos de nível superior em Geociências (Geologia, Geofísica, Meteorologia e Oceanografia) começaram a ser criados somente a partir da segunda metade do século passado. Atualmente, há cursos nessas modalidades em todo o país, que enfrentam, contudo, sérios obstáculos para que o ensino evolua de acordo com as necessidades atuais do mercado de trabalho, e das tendências impostas pelo avanço tecnológico. Neste trabalho analisamos entraves e lacunas profissionais no Ensino Superior e destacamos algumas práticas educacionais capazes de melhorar o aprendizado, que poderiam ser universalizadas. É inadiável expandir a área de Geociências nos cursos de formação e capacitação de professores para a Educação Básica; o artigo reúne alguns fatores essenciais para atingir essa meta

    Ensino de Geociências na universidade

    Get PDF
    In colonial times, in Brazil, although intense mining activities occurred in the search for gold and diamonds, relevant geoscientific actions did not occur. In the 19th century, a few geological exploratory trips were made, from which several written contributions resulted. Moreover, important institutions were created, such as the National Observatory, the Meteorological Service, the Magnetic Observatory at Vassouras and the Mining School of Ouro Preto in 1876, The formal teaching of Geosciences in Brazil started only in 1957, with the ”Campaign for the training of geologists” (CAGE), that created and provided material and human resources to four Geology undergraduate courses. In Meteorology the first course was in 1973, in Oceanography in 1971 and in Geophysics in 1983. Now, 48 Brazilian universities offer 71 undergraduate courses in Geosciences, 33 in Geology, 3 in Geological Engineering, 14 in Meteorology, 13 in Oceanography and 8 in Geophysics. Fifty-seven graduate programs exist in Brazil, 13 of which are considered of excellence, indicating that the area is mature and consolidated. Most geologists and geophysicists were absorbed in geological mapping activities, as well as mining and oil exploration. Meteorologists dedicated themselves to meteorological and climatic monitoring, as well as to projects in hydroelectric, wind and solar energy. Graduates in Oceanography worked in institutions related to the environment, agriculture, and to the Ministry of the Navy. The atmospheric and oceanographic sciences are of global relevance in studies of climatic changes and global warming. In turn, the major challenge of geologists and geophysicists is to improve knowledge of the Brazilian territory, at the local and regional scale.No Brasil colonial, apesar de intensa atividade mineira na busca de ouro e diamantes, não houve práticas geocientíficas relevantes. No século XIX ocorreram diversas explorações geológicas, das quais resultou uma vasta contribuição escrita. Além disso foram criadas importantes instituições, como o Observatório Nacional, o Serviço Meteorológico, o Observatório Magnético de Vassouras e a Escola de Minas de Ouro Preto em 1876. O ensino formal de Geociências no Brasil foi iniciado apenas em 1957, com a Campanha de Formação de Geólogos (CAGE), que criou e forneceu recursos materiais e humanos para quatro cursos de graduação em Geologia. Na Meteorologia a graduação se iniciou em 1963, na Oceanografia em 1971, e na Geofísica em 1983. Atualmente, 47 universidades brasileiras oferecem 71 cursos de graduação nas Geociências. Há 33 cursos de Geologia, três de Engenharia Geológica, 14 de Meteorologia, 13 de Oceanografia e 8 de Geofísica. Há no Brasil 57 programas de pós-graduação em Geociências, 13 dos quais considerados de excelência, indicando que a situação atual da área é de consolidação e maturidade. Geólogos e geofísicos foram absorvidos, em sua maioria, pelas atividades de mapeamento geológico, exploração mineral e de petróleo. Meteorologistas dedicaram-se ao monitoramento meteorológico e climático, e também a projetos de energia hidroelétrica, eólica e solar. Na Oceanografia, os formados atuaram em órgãos relacionados com ambiente, agricultura e no Ministério da Marinha. Quanto à pesquisa, as ciências atmosféricas e oceanográficas são de grande relevância global, no estudo das mudanças climáticas e o aquecimento global. Por sua vez, o maior desafio de geólogos e geofísicos é o de melhorar do conhecimento do território brasileiro, na escala local ou regional

    Contributions of mean and shape of blood pressure distribution to worldwide trends and variations in raised blood pressure: A pooled analysis of 1018 population-based measurement studies with 88.6 million participants

    Get PDF
    © The Author(s) 2018. Background: Change in the prevalence of raised blood pressure could be due to both shifts in the entire distribution of blood pressure (representing the combined effects of public health interventions and secular trends) and changes in its high-blood-pressure tail (representing successful clinical interventions to control blood pressure in the hypertensive population). Our aim was to quantify the contributions of these two phenomena to the worldwide trends in the prevalence of raised blood pressure. Methods: We pooled 1018 population-based studies with blood pressure measurements on 88.6 million participants from 1985 to 2016. We first calculated mean systolic blood pressure (SBP), mean diastolic blood pressure (DBP) and prevalence of raised blood pressure by sex and 10-year age group from 20-29 years to 70-79 years in each study, taking into account complex survey design and survey sample weights, where relevant. We used a linear mixed effect model to quantify the association between (probittransformed) prevalence of raised blood pressure and age-group- and sex-specific mean blood pressure. We calculated the contributions of change in mean SBP and DBP, and of change in the prevalence-mean association, to the change in prevalence of raised blood pressure. Results: In 2005-16, at the same level of population mean SBP and DBP, men and women in South Asia and in Central Asia, the Middle East and North Africa would have the highest prevalence of raised blood pressure, and men and women in the highincome Asia Pacific and high-income Western regions would have the lowest. In most region-sex-age groups where the prevalence of raised blood pressure declined, one half or more of the decline was due to the decline in mean blood pressure. Where prevalence of raised blood pressure has increased, the change was entirely driven by increasing mean blood pressure, offset partly by the change in the prevalence-mean association. Conclusions: Change in mean blood pressure is the main driver of the worldwide change in the prevalence of raised blood pressure, but change in the high-blood-pressure tail of the distribution has also contributed to the change in prevalence, especially in older age groups

    Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight NCD Risk Factor Collaboration (NCD-RisC)

    Get PDF
    From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions

    Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants

    Get PDF
    Background Hypertension can be detected at the primary health-care level and low-cost treatments can effectively control hypertension. We aimed to measure the prevalence of hypertension and progress in its detection, treatment, and control from 1990 to 2019 for 200 countries and territories. Methods We used data from 1990 to 2019 on people aged 30–79 years from population-representative studies with measurement of blood pressure and data on blood pressure treatment. We defined hypertension as having systolic blood pressure 140 mm Hg or greater, diastolic blood pressure 90 mm Hg or greater, or taking medication for hypertension. We applied a Bayesian hierarchical model to estimate the prevalence of hypertension and the proportion of people with hypertension who had a previous diagnosis (detection), who were taking medication for hypertension (treatment), and whose hypertension was controlled to below 140/90 mm Hg (control). The model allowed for trends over time to be non-linear and to vary by age. Findings The number of people aged 30–79 years with hypertension doubled from 1990 to 2019, from 331 (95% credible interval 306–359) million women and 317 (292–344) million men in 1990 to 626 (584–668) million women and 652 (604–698) million men in 2019, despite stable global age-standardised prevalence. In 2019, age-standardised hypertension prevalence was lowest in Canada and Peru for both men and women; in Taiwan, South Korea, Japan, and some countries in western Europe including Switzerland, Spain, and the UK for women; and in several low-income and middle-income countries such as Eritrea, Bangladesh, Ethiopia, and Solomon Islands for men. Hypertension prevalence surpassed 50% for women in two countries and men in nine countries, in central and eastern Europe, central Asia, Oceania, and Latin America. Globally, 59% (55–62) of women and 49% (46–52) of men with hypertension reported a previous diagnosis of hypertension in 2019, and 47% (43–51) of women and 38% (35–41) of men were treated. Control rates among people with hypertension in 2019 were 23% (20–27) for women and 18% (16–21) for men. In 2019, treatment and control rates were highest in South Korea, Canada, and Iceland (treatment >70%; control >50%), followed by the USA, Costa Rica, Germany, Portugal, and Taiwan. Treatment rates were less than 25% for women and less than 20% for men in Nepal, Indonesia, and some countries in sub-Saharan Africa and Oceania. Control rates were below 10% for women and men in these countries and for men in some countries in north Africa, central and south Asia, and eastern Europe. Treatment and control rates have improved in most countries since 1990, but we found little change in most countries in sub-Saharan Africa and Oceania. Improvements were largest in high-income countries, central Europe, and some upper-middle-income and recently high-income countries including Costa Rica, Taiwan, Kazakhstan, South Africa, Brazil, Chile, Turkey, and Iran. Interpretation Improvements in the detection, treatment, and control of hypertension have varied substantially across countries, with some middle-income countries now outperforming most high-income nations. The dual approach of reducing hypertension prevalence through primary prevention and enhancing its treatment and control is achievable not only in high-income countries but also in low-income and middle-income settings

    Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults

    Get PDF
    Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from 1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories. Methods We used data from 3663 population-based studies with 222 million participants that measured height and weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the individual and combined prevalence of underweight (BMI 2 SD above the median). Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in 11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and 140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%) with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and 42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents, the increases in double burden were driven by increases in obesity, and decreases in double burden by declining https://researchonline.ljmu.ac.uk/images/research_banner_face_lab_290.jpgunderweight or thinness. Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of underweight while curbing and reversing the increase in obesity

    Perspectivas do ensino de Geociências

    No full text
    RESUMO O ensino de Ciências foi incorporado aos currículos escolares somente no século XIX. No Brasil-Império o ensino das Ciências Naturais era incipiente, embora ciências já fizessem parte do currículo do ensino secundário desde a criação do Colégio Pedro II, em 1837. Os primeiros cursos de nível superior em Geociências (Geologia, Geofísica, Meteorologia e Oceanografia) começaram a ser criados somente a partir da segunda metade do século passado. Atualmente, há cursos nessas modalidades em todo o país, que enfrentam, contudo, sérios obstáculos para que o ensino evolua de acordo com as necessidades atuais do mercado de trabalho, e das tendências impostas pelo avanço tecnológico. Neste trabalho analisamos entraves e lacunas profissionais no Ensino Superior e destacamos algumas práticas educacionais capazes de melhorar o aprendizado, que poderiam ser universalizadas. É inadiável expandir a área de Geociências nos cursos de formação e capacitação de professores para a Educação Básica; o artigo reúne alguns fatores essenciais para atingir essa meta

    Ensino de Geociências na universidade

    No full text
    RESUMO No Brasil colonial, apesar de intensa atividade mineira na busca de ouro e diamantes, não houve práticas geocientíficas relevantes. No século XIX ocorreram diversas explorações geológicas, das quais resultou uma vasta contribuição escrita. Além disso foram criadas importantes instituições, como o Observatório Nacional, o Serviço Meteorológico, o Observatório Magnético de Vassouras e a Escola de Minas de Ouro Preto em 1876. O ensino formal de Geociências no Brasil foi iniciado apenas em 1957, com a Campanha de Formação de Geólogos (CAGE), que criou e forneceu recursos materiais e humanos para quatro cursos de graduação em Geologia. Na Meteorologia a graduação se iniciou em 1963, na Oceanografia em 1971, e na Geofísica em 1983. Atualmente, 47 universidades brasileiras oferecem 71 cursos de graduação nas Geociências. Há 33 cursos de Geologia, três de Engenharia Geológica, 14 de Meteorologia, 13 de Oceanografia e 8 de Geofísica. Há no Brasil 57 programas de pós-graduação em Geociências, 13 dos quais considerados de excelência, indicando que a situação atual da área é de consolidação e maturidade. Geólogos e geofísicos foram absorvidos, em sua maioria, pelas atividades de mapeamento geológico, exploração mineral e de petróleo. Meteorologistas dedicaram-se ao monitoramento meteorológico e climático, e também a projetos de energia hidroelétrica, eólica e solar. Na Oceanografia, os formados atuaram em órgãos relacionados com ambiente, agricultura e no Ministério da Marinha. Quanto à pesquisa, as ciências atmosféricas e oceanográficas são de grande relevância global, no estudo das mudanças climáticas e o aquecimento global. Por sua vez, o maior desafio de geólogos e geofísicos é o de melhorar do conhecimento do território brasileiro, na escala local ou regional
    corecore