10 research outputs found

    The Effect of Blade Count on Body Force Model Performance for Axial Fans

    Get PDF
    Body force models enable inexpensive numerical simulations of turbomachinery. The approach replaces the blades with sources of momentum/energy. Such models capture a “smeared out” version of the blades’ effect on the flow, reducing computational cost. The body force model used in this paper has been widely used in aircraft engine applications. Its implementation for low speed, low solidity (few blades) turbomachines, such as automotive cooling fans, enables predictions of cooling flows and component temperatures without calibrated fan curves. Automotive cooling fans tend to have less than 10 blades, which is approximately 50% of blade counts for modern jet engine fans. The effect that has on the body force model predictions is unknown, and the objective of this paper is to quantify how varying blade count affects the accuracy of the predictions for both uniform and non-uniform inflow. The key findings are that reductions in blade metal blockage combined with spanwise flow redistribution drives the body force model to more accurately predict work coefficient as the blade count decreases and that reducing the number of blades is found to have negligible impacts on upstream influence and distortion transfer in non-uniform inflow until extremely low blade counts (such as 2) are applied

    Innovations in Body Force Modeling of Transonic Compressor Blade Rows

    No full text
    Aeroengine fans and compressors increasingly operate subject to inlet distortion in the transonic flow regime. In this paper, innovations to low-order numerical modeling of fans and compressors via volumetric source terms (body forces) are presented. The approach builds upon past work to accommodate any axial fan/compressor geometry and ensures accurate work input and efficiency prediction across a range of flow coefficients. In particular, the efficiency drop-off near choke is captured. The model for a particular blade row is calibrated using data from single-passage bladed computations. Compared to full-wheel unsteady computations which include the fan/compressor blades, the source term model approach can reduce computational cost by at least two orders of magnitude through a combination of reducing grid resolution and, critically, eliminating the need for a time-resolved approach. The approach is applied to NASA stage 67. For uniform flow, at 90% corrected speed and peak-efficiency, the body force model is able to predict the total-to-total pressure rise coefficient of the stage to within 1.43% and the isentropic efficiency to within 0.03%. With a 120∘ sector of reduced inlet total pressure, distortion transfer through the machine is well-captured and the associated efficiency penalty predicted with less than 2.7% error

    Nonlinear Modeling of an Automotive Air Conditioning System Considering Active Grille Shutters

    No full text
    This paper expands upon the state of the art in nonlinear modeling of automotive air conditioning systems. Prior models considered only the effects of the refrigerant compressor and the condenser fan. There are two new aspects included here. First, we create a mathematical model for front-end underhood airflow, considering vehicle speed, condenser fan rotational speed, and active grille shutter position. In addition, we present a new model for the power consumption of the vehicle associated with aerodynamic drag caused by underhood flow, as well as a fan power model which accounts not only for changes in rotational speed but also changes in flow rate. The models developed in this paper are coded in MATLAB/Simulink and assessed for various vehicle driving conditions against a higher-fidelity vehicle energy management model, showing good agreement. By including the active grille shutters as a controllable actuator and the impact of underhood flow on vehicle drag and fan power consumption, control schemes can be developed to holistically target reduced energy consumption for the air conditioning system and, thus, improve the overall vehicle energy efficiency

    2011 ACCF/AHA Guideline for Coronary Artery Bypass Graft Surgery

    No full text
    corecore