333 research outputs found

    Assay strategies for the discovery and validation of therapeutics targeting <i>Brugia pahangi</i> Hsp90

    Get PDF
    The chemotherapy of lymphatic filariasis relies upon drugs such as diethylcarbamazine and ivermectin that largely target the microfilarial stages of the parasite, necessitating continued treatment over the long reproductive life span of the adult worm. The identification of compounds that target adult worms has been a long-term goal of WHO. Here we describe a fluorescence polarization assay for the identification of compounds that target Hsp90 in adult filarial worms. The assay was originally developed to identify inhibitors of Hsp90 in tumor cells, and relies upon the ability of small molecules to inhibit the binding of fluorescently labelled geldanamycin to Hsp90. We demonstrate that the assay works well with soluble extracts of Brugia, while extracts of the free-living nematode C. elegans fail to bind the probe, in agreement with data from other experiments. The assay was validated using known inhibitors of Hsp90 that compete with geldanamycin for binding to Hsp90, including members of the synthetic purine-scaffold series of compounds. The efficacy of some of these compounds against adult worms was confirmed in vitro. Moreover, the assay is sufficiently sensitive to differentiate between binding of purine-scaffold compounds to human and Brugia Hsp90. The assay is suitable for high-throughput screening and provides the first example of a format with the potential to identify novel inhibitors of Hsp90 in filarial worms and in other parasitic species where Hsp90 may be a target

    Neighbour identity hardly affects litter-mixture effects on decomposition rates of New Zealand forest species.

    Get PDF
    The mass loss of litter mixtures is often different than expected based on the mass loss of the component species. We investigated if the identity of neighbour species affects these litter-mixing effects. To achieve this, we compared decomposition rates in monoculture and in all possible two-species combinations of eight tree species, widely differing in litter chemistry, set out in two contrasting New Zealand forest types. Litter from the mixed-species litter bags was separated into its component species, which allowed us to quantify the importance of litter-mixing effects and neighbour identity, relative to the effects of species identity, litter chemistry and litter incubation environment. Controlling factors on litter decomposition rate decreased in importance in the order: species identity (litter quality) >> forest type >> neighbour species. Species identity had the strongest influence on decomposition rate. Interspecific differences in initial litter lignin concentration explained a large proportion of the interspecific differences in litter decomposition rate. Litter mass loss was higher and litter-mixture effects were stronger on the younger, more fertile alluvial soils than on the older, less-fertile marine terrace soils. Litter-mixture effects only shifted percentage mass loss within the range of 1.5%. There was no evidence that certain litter mixtures consistently showed interactive effects. Contrary to common theory, adding a relatively fast-decomposing species generally slowed down the decomposition of the slower decomposing species in the mixture. This study shows that: (1) species identity, litter chemistry and forest type are quantitatively the most important drivers of litter decomposition in a New Zealand rain forest; (2) litter-mixture effects—although statistically significant—are far less important and hardly depend on the identity and the chemical characteristics of the neighbour species; (3) additive effects predominate in this ecosystem, so that mass dynamics of the mixtures can be predicted from the monocultures

    A critical discussion of the physics of wood–water interactions

    Get PDF

    Asymmetric Genome Organization in an RNA Virus Revealed via Graph-Theoretical Analysis of Tomographic Data

    Get PDF
    Cryo-electron microscopy permits 3-D structures of viral pathogens to be determined in remarkable detail. In particular, the protein containers encapsulating viral genomes have been determined to high resolution using symmetry averaging techniques that exploit the icosahedral architecture seen in many viruses. By contrast, structure determination of asymmetric components remains a challenge, and novel analysis methods are required to reveal such features and characterize their functional roles during infection. Motivated by the important, cooperative roles of viral genomes in the assembly of single-stranded RNA viruses, we have developed a new analysis method that reveals the asymmetric structural organization of viral genomes in proximity to the capsid in such viruses. The method uses geometric constraints on genome organization, formulated based on knowledge of icosahedrally-averaged reconstructions and the roles of the RNA-capsid protein contacts, to analyse cryo-electron tomographic data. We apply this method to the low-resolution tomographic data of a model virus and infer the unique asymmetric organization of its genome in contact with the protein shell of the capsid. This opens unprecedented opportunities to analyse viral genomes, revealing conserved structural features and mechanisms that can be targeted in antiviral drug desig

    Using C. elegans to decipher the cellular and molecular mechanisms underlying neurodevelopmental disorders

    Get PDF
    Prova tipográfica (uncorrected proof)Neurodevelopmental disorders such as epilepsy, intellectual disability (ID), and autism spectrum disorders (ASDs) occur in over 2 % of the population, as the result of genetic mutations, environmental factors, or combination of both. In the last years, use of large-scale genomic techniques allowed important advances in the identification of genes/loci associated with these disorders. Nevertheless, following association of novel genes with a given disease, interpretation of findings is often difficult due to lack of information on gene function and effect of a given mutation in the corresponding protein. This brings the need to validate genetic associations from a functional perspective in model systems in a relatively fast but effective manner. In this context, the small nematode, Caenorhabditis elegans, presents a good compromise between the simplicity of cell models and the complexity of rodent nervous systems. In this article, we review the features that make C. elegans a good model for the study of neurodevelopmental diseases. We discuss its nervous system architecture and function as well as the molecular basis of behaviors that seem important in the context of different neurodevelopmental disorders. We review methodologies used to assess memory, learning, and social behavior as well as susceptibility to seizures in this organism. We will also discuss technological progresses applied in C. elegans neurobiology research, such as use of microfluidics and optogenetic tools. Finally, we will present some interesting examples of the functional analysis of genes associated with human neurodevelopmental disorders and how we can move from genes to therapies using this simple model organism.The authors would like to acknowledge Fundação para a Ciência e Tecnologia (FCT) (PTDC/SAU-GMG/112577/2009). AJR and CB are recipients of FCT fellowships: SFRH/BPD/33611/2009 and SFRH/BPD/74452/2010, respectively

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Localization and Broadband Follow-Up of the Gravitational-Wave Transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser InterferometerGravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimatesof the time, significance, and sky location of the event were shared with 63 teams of observers covering radio,optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter wedescribe the low-latency analysis of the GW data and present the sky localization of the first observed compactbinary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-rayCoordinates Network circulars, giving an overview of the participating facilities, the GW sky localizationcoverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger,there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadbandcampaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broadcapabilities of the transient astronomy community and the observing strategies that have been developed to pursueneutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-upcampaign are being disseminated in papers by the individual teams

    Mucus extravasation and retention phenomena: a 24-year study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mucoceles are benign lesions related to the minor salivary glands and their respective ducts frequently affecting oral structures which are generally asymptomatic. Mucoceles are generally characterized by swollen nodular lesions preferentially located on the lower lip and differ from the so-called ranulas, which are lesions located on the floor of the mouth and related to the sublingual or submandibular glands.</p> <p>Methods</p> <p>The objective of the present study was to analyze data such as age, gender, race and site of the lesion of 173 mucocele cases diagnosed at the Discipline of Stomatology, São José dos Campos Dental School, UNESP, over a period of 24 years (April 1980 to February 2003).</p> <p>Results</p> <p>Of the 173 cases analyzed, 104 (60.12%) were females and 69 (39.88%) were males. Age ranged from 4 to 70 years (mean ± SD: 17 ± 9.53) and most patients were in the second decade of life (n = 86, 49.42%); white (n = 124, 71.68%). The lower lip was the site most frequently affected by the lesions (n = 135, 78.03%), whereas the lowest prevalence was observed for the soft palate, buccal mucosa, and lingual frenum.</p> <p>Conclusion</p> <p>In this study, mucoceles predominated in white female subjects in the second decade of life, with the lower lip being the most frequently affected site.</p

    Role of novel targeted therapies in the clinic

    Get PDF
    The number and variety of novel, molecular-targeted agents offers realistic hope for significant advances in cancer treatment. The potential of these new treatment approaches is unquestionable, but the reality is something that only thorough clinical evaluation and experience can reveal. Clinical experience of targeted therapies is at an early stage but it is likely that we will have an increasing number of treatment options available to us in the near future. This manuscript explores our current understanding of molecular-targeted therapies and considers: What approach should be used? (single vs multitarget agents); When should they be administered? (identifying the optimal point for intervention); How should they be used? (monotherapy or combination therapy regimens); and Who should we be giving them to? (acknowledging the need for patient selection)

    Controlling epidemic spread by social distancing: Do it well or not at all

    Get PDF
    BACKGROUND: Existing epidemiological models have largely tended to neglect the impact of individual behaviour on the dynamics of diseases. However, awareness of the presence of illness can cause people to change their behaviour by, for example, staying at home and avoiding social contacts. Such changes can be used to control epidemics but they exact an economic cost. Our aim is to study the costs and benefits of using individual-based social distancing undertaken by healthy individuals as a form of control.METHODS: Our model is a standard SIR model superimposed on a spatial network, without and with addition of small-world interactions. Disease spread is controlled by allowing susceptible individuals to temporarily reduce their social contacts in response to the presence of infection within their local neighbourhood. We ascribe an economic cost to the loss of social contacts, and weigh this against the economic benefit gained by reducing the impact of the epidemic. We study the sensitivity of the results to two key parameters, the individuals' attitude to risk and the size of the awareness neighbourhood.RESULTS: Depending on the characteristics of the epidemic and on the relative economic importance of making contacts versus avoiding infection, the optimal control is one of two extremes: either to adopt a highly cautious control, thereby suppressing the epidemic quickly by drastically reducing contacts as soon as disease is detected; or else to forego control and allow the epidemic to run its course. The worst outcome arises when control is attempted, but not cautiously enough to cause the epidemic to be suppressed. The next main result comes from comparing the size of the neighbourhood of which individuals are aware to that of the neighbourhood within which transmission can occur. The control works best when these sizes match and is particularly ineffective when the awareness neighbourhood is smaller than the infection neighbourhood. The results are robust with respect to inclusion of long-range, small-world links which destroy the spatial structure, regardless of whether individuals can or cannot control them. However, addition of many non-local links eventually makes control ineffective.CONCLUSIONS: These results have implications for the design of control strategies using social distancing: a control that is too weak or based upon inaccurate knowledge, may give a worse outcome than doing nothing
    corecore