68 research outputs found

    PMD23 COST-EFFECTIVENESS OF SPECIFIC USE OF THE LANCET BD QUIKHEEL® IN SCREENING PROGRAM OF NEONATAL CONGENITAL HYPOTHYROIDISM IN MEXICO

    Get PDF

    SN 2009bb: a Peculiar Broad-Lined Type Ic Supernova

    Get PDF
    Ultraviolet, optical, and near-infrared photometry and optical spectroscopy of the broad-lined Type Ic supernova (SN) 2009bb are presented, following the flux evolution from -10 to +285 days past B-band maximum. Thanks to the very early discovery, it is possible to place tight constraints on the SN explosion epoch. The expansion velocities measured from near maximum spectra are found to be only slightly smaller than those measured from spectra of the prototype broad-lined SN 1998bw associated with GRB 980425. Fitting an analytical model to the pseudo-bolometric light curve of SN 2009bb suggests that 4.1+-1.9 Msun of material was ejected with 0.22 +-0.06 Msun of it being 56Ni. The resulting kinetic energy is 1.8+-0.7x10^52 erg. This, together with an absolute peak magnitude of MB=-18.36+-0.44, places SN 2009bb on the energetic and luminous end of the broad-lined Type Ic (SN Ic) sequence. Detection of helium in the early time optical spectra accompanied with strong radio emission, and high metallicity of its environment makes SN 2009bb a peculiar object. Similar to the case for GRBs, we find that the bulk explosion parameters of SN 2009bb cannot account for the copious energy coupled to relativistic ejecta, and conclude that another energy reservoir (a central engine) is required to power the radio emission. Nevertheless, the analysis of the SN 2009bb nebular spectrum suggests that the failed GRB detection is not imputable to a large angle between the line-of-sight and the GRB beamed radiation. Therefore, if a GRB was produced during the SN 2009bb explosion, it was below the threshold of the current generation of gamma-ray instruments.Comment: Accepted for publication in Ap

    Early ultraviolet emission in the Type Ia supernova LSQ12gdj: No evidence for ongoing shock interaction

    Get PDF
    We present photospheric-phase observations of LSQ12gdj, a slowly-declining, UV-bright Type Ia supernova. Classified well before maximum light, LSQ12gdj has extinction-corrected absolute magnitude MB=19.8M_B = -19.8, and pre-maximum spectroscopic evolution similar to SN 1991T and the super-Chandrasekhar-mass SN 2007if. We use ultraviolet photometry from Swift, ground-based optical photometry, and corrections from a near-infrared photometric template to construct the bolometric (1600-23800 \AA) light curve out to 45 days past BB-band maximum light. We estimate that LSQ12gdj produced 0.96±0.070.96 \pm 0.07 MM_\odot of 56^{56}Ni, with an ejected mass near or slightly above the Chandrasekhar mass. As much as 27% of the flux at the earliest observed phases, and 17% at maximum light, is emitted bluewards of 3300 \AA. The absence of excess luminosity at late times, the cutoff of the spectral energy distribution bluewards of 3000 \AA, and the absence of narrow line emission and strong Na I D absorption all argue against a significant contribution from ongoing shock interaction. However, up to 10% of LSQ12gdj's luminosity near maximum light could be produced by the release of trapped radiation, including kinetic energy thermalized during a brief interaction with a compact, hydrogen-poor envelope (radius <1013< 10^{13} cm) shortly after explosion; such an envelope arises generically in double-degenerate merger scenarios.Comment: 18 pages, 10 figures, accepted to MNRAS; v2 accepted version. Spectra available on WISEReP (http://www.weizmann.ac.il/astrophysics/wiserep/). Natural-system photometry and bolometric light curve available as online tables in MNRAS versio

    Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample

    Get PDF
    This is the second paper of a series in which we present new measurements of the observed rates of supernovae (SNe) in the local Universe, determined from the Lick Observatory Supernova Search (LOSS). In this paper, a complete SN sample is constructed, and the observed (uncorrected for host-galaxy extinction) luminosity functions (LFs) of SNe are derived. These LFs solve two issues that have plagued previous rate calculations for nearby SNe: the luminosity distribution of SNe and the host-galaxy extinction. We select a volume-limited sample of 175 SNe, collect photometry for every object, and fit a family of light curves to constrain the peak magnitudes and light-curve shapes. The volume-limited LFs show that they are not well represented by a Gaussian distribution. There are notable differences in the LFs for galaxies of different Hubble types (especially for SNe Ia). We derive the observed fractions for the different subclasses in a complete SN sample, and find significant fractions of SNe II-L (10%), IIb (12%), and IIn (9%) in the SN II sample. Furthermore, we derive the LFs and the observed fractions of different SN subclasses in a magnitude-limited survey with different observation intervals, and find that the LFs are enhanced at the high-luminosity end and appear more "standard" with smaller scatter, and that the LFs and fractions of SNe do not change significantly when the observation interval is shorter than 10 days. We also discuss the LFs in different galaxy sizes and inclinations, and for different SN subclasses. Some notable results are ... (abridged).Comment: Minor revisions after the referee's report. MNRAS accepted (Paper II of a series). For high-res figures, latex source, landscape tables, and online data, please visit http://astro.berkeley.edu/~weidong/rate

    The death of massive stars - I. Observational constraints on the progenitors of type II-P supernovae

    Get PDF
    We present the results of a 10.5 yr, volume limited (28 Mpc) search for supernova (SN) progenitor stars. We compile all SNe discovered within this volume (132, of which 27% are type Ia) and determine the relative rates of each sub-type from literature studies : II-P (59%), Ib/c (29%), IIb (5%), IIn (4%) and II-L (3%). Twenty II-P SNe have high quality optical or near-IR pre-explosion images that allow a meaningful search for the progenitor stars. In five cases they are clearly red supergiants, one case is unconstrained, two fall on compact coeval star clusters and the other twelve have no progenitor detected. We review and update all the available data for the host galaxies (distance, metallicity and extinction) and determine masses and upper mass estimates using the STARS stellar evolutionary code and a single consistent homogeneous method. A maximum likelihood calculation suggests that the minimum stellar mass for a type II-P to form is m(min)=8.5 +1/-1.5 Msol and the maximum mass for II-P progenitors is m(max)=16.5 +/- 1.5 Msol, assuming a Salpeter initial mass function (in the range Gamma = -1.35 +0.3/-0.7). The minimum mass is consistent with current estimates for white dwarf progenitor masses, but the maximum mass does not appear consistent with massive star populations. Red supergiants in the Local Group have masses up to 25Msol and the minimum mass to produce a Wolf-Rayet star in single star evolution (between solar and LMC metallicity) is similarly 25-30 Msol. We term this discrepancy the "red supergiant problem" and speculate that these stars could have core masses high enough to form black holes and SNe which are too faint to have been detected. Low luminosity SNe with low 56Ni production seem to arise from explosions of low mass progenitors near the mass threshold for core-collapse. (abridged).Comment: 37 pages, 9 figs, accepted for publication in MNRA

    Spectroscopic observations of sn 2012fr: A luminous, normal type ia supernova with early high-velocity features and a late velocity plateau

    Get PDF
    We present 65 optical spectra of the Type Ia SN 2012fr, 33 of which were obtained before maximum light. At early times, SN 2012fr shows clear evidence of a high-velocity feature (HVF) in the Si II λ6355 line that can be cleanly decoupled from the lower velocity photospheric component. This Si II λ6355 HVF fades by phase -5; subsequently, the photospheric component exhibits a very narrow velocity width and remains at a nearly constant velocity of 12,000 km s-1 until at least five weeks after maximum brightness. The Ca II infrared triplet exhibits similar evidence for both a photospheric component at v 12,000 km s-1 with narrow line width and long velocity plateau, as well as an HVF beginning at v 31,000 km s-1 two weeks before maximum. SN 2012fr resides on the border between the shallow silicon and core-normal subclasses in the Branch et al. classification scheme, and on the border between normal and high-velocity Type Ia supernovae (SNe Ia) in the Wang et al. system. Though it is a clear member of the low velocity gradient group of SNe Ia and exhibits a very slow light-curve decline, it shows key dissimilarities with the overluminous SN 1991T or SN 1999aa subclasses of SNe Ia. SN 2012fr represents a well-observed SN Ia at the luminous end of the normal SN Ia distribution and a key transitional event between nominal spectroscopic subclasses of SNe Ia. © 2013. The American Astronomical Society. All rights reserved.

    The ASAS-SN Bright Supernova Catalog I: 2013-2014

    Get PDF
    We present basic statistics for all supernovae discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN) during its first year-and-a-half of operations, spanning 2013 and 2014. We also present the same information for all other bright (mV17m_V\leq17), spectroscopically confirmed supernovae discovered from 2014 May 1 through the end of 2014, providing a comparison to the ASAS-SN sample starting from the point where ASAS-SN became operational in both hemispheres. In addition, we present collected redshifts and near-UV through IR magnitudes, where available, for all host galaxies of the bright supernovae in both samples. This work represents a comprehensive catalog of bright supernovae and their hosts from multiple professional and amateur sources, allowing for population studies that were not previously possible because the all-sky emphasis of ASAS-SN redresses most previously existing biases. In particular, ASAS-SN systematically finds supernovae closer to the centers of host galaxies than either other professional surveys or amateurs, a remarkable result given ASAS-SN's poorer angular resolution. This is the first of a series of yearly papers on bright supernovae and their hosts that will be released by the ASAS-SN team

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Two transitional type~Ia supernovae located in the Fornax cluster member NGC 1404: SN 2007on and SN 2011iv

    Get PDF
    We present an analysis of ultraviolet (UV) to near-infrared observations of the fast-declining Type Ia supernovae (SNe Ia) 2007on and 2011iv, hosted by the Fornax cluster member NGC 1404. The B-band light curves of SN 2007on and SN 2011iv are characterised by dm_15(B) decline-rate values of 1.96 mag and 1.77 mag, respectively. Although they have similar decline rates, their peak B- and H-band magnitudes differ by ~0.60 mag and ~0.35 mag, respectively. After correcting for the luminosity vs. decline rate and the luminosity vs. colour relations, the peak B-band and H-band light curves provide distances that differ by ~14% and ~9%, respectively. These findings serve as a cautionary tale for the use of transitional SNe Ia located in early-type hosts in the quest to measure cosmological parameters. Interestingly, even though SN 2011iv is brighter and bluer at early times, by three weeks past maximum and extending over several months, its B-V colour is 0.12 mag redder than that of SN 2007on. To reconcile this unusual behaviour, we turn to guidance from a suite of spherical one-dimensional Chandrasekhar-mass delayed-detonation explosion models. In this context, 56Ni production depends on both the so-called transition density and the central density of the progenitor white dwarf. To first order, the transition density drives the luminosity-width relation, while the central density is an important second-order parameter. Within this context, the differences in the B-V color evolution along the Lira regime suggests the progenitor of SN~2011iv had a higher central density than SN~2007on

    PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects

    Get PDF
    Context. The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. PESSTO classifies transients from publicly available sources and wide-field surveys, and selects science targets for detailed spectroscopic and photometric follow-up. PESSTO runs for nine months of the year, January – April and August – December inclusive, and typically has allocations of 10 nights per month. Aims. We describe the data reduction strategy and data products that are publicly available through the ESO archive as the Spectroscopic Survey data release 1 (SSDR1). Methods. PESSTO uses the New Technology Telescope with the instruments EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. We target supernovae and optical transients brighter than 20.5m for classification. Science targets are selected for follow-up based on the PESSTO science goal of extending knowledge of the extremes of the supernova population. We use standard EFOSC2 set-ups providing spectra with resolutions of 13–18 Å between 3345−9995 Å. A subset of the brighter science targets are selected for SOFI spectroscopy with the blue and red grisms (0.935−2.53 μm and resolutions 23−33 Å) and imaging with broadband JHKs filters. Results. This first data release (SSDR1) contains flux calibrated spectra from the first year (April 2012–2013). A total of 221 confirmed supernovae were classified, and we released calibrated optical spectra and classifications publicly within 24 h of the data being taken (via WISeREP). The data in SSDR1 replace those released spectra. They have more reliable and quantifiable flux calibrations, correction for telluric absorption, and are made available in standard ESO Phase 3 formats. We estimate the absolute accuracy of the flux calibrations for EFOSC2 across the whole survey in SSDR1 to be typically ~15%, although a number of spectra will have less reliable absolute flux calibration because of weather and slit losses. Acquisition images for each spectrum are available which, in principle, can allow the user to refine the absolute flux calibration. The standard NIR reduction process does not produce high accuracy absolute spectrophotometry but synthetic photometry with accompanying JHKs imaging can improve this. Whenever possible, reduced SOFI images are provided to allow this. Conclusions. Future data releases will focus on improving the automated flux calibration of the data products. The rapid turnaround between discovery and classification and access to reliable pipeline processed data products has allowed early science papers in the first few months of the survey
    corecore