644 research outputs found

    Intensive HST survey for z > 1 type Ia supernovae by targeting galaxy clusters

    Get PDF
    ManuscriptWe present a new survey strategy to discover and study high redshift Type Ia supernovae (SNe Ia) using the Hubble Space Telescope (HST). By targeting massive galaxy clusters at 0.9 0.95, nine of which were in galaxy clusters. This strategy provides a SN sample that can be used to decouple the effects of host galaxy extinction and intrinsic color in high redshift SNe, thereby reducing one of the largest systematic uncertainties in SN cosmology

    Using visual analytics to develop situation awareness in astrophysics

    Get PDF
    We present a novel collaborative visual analytics application for cognitively overloaded users in the astrophysics domain. The system was developed for scientists who need to analyze heterogeneous, complex data under time pressure, and make predictions and time-critical decisions rapidly and correctly under a constant influx of changing data. The Sunfall Data Taking system utilizes several novel visualization and analysis techniques to enable a team of geographically distributed domain specialists to effectively and remotely maneuver a custom-built instrument under challenging operational conditions. Sunfall Data Taking has been in production use for 2 years by a major international astrophysics collaboration (the largest data volume supernova search currently in operation), and has substantially improved the operational efficiency of its users. We describe the system design process by an interdisciplinary team, the system architecture and the results of an informal usability evaluation of the production system by domain experts in the context of Endsley's three levels of situation awareness

    Integral field spectroscopy of supernova explosion sites: constraining mass and metallicity of the progenitors -- II. Type II-P and II-L supernovae

    Full text link
    Thirteen explosion sites of type II-P and II-L supernovae in nearby galaxies have been observed using integral field spectroscopy, enabling both spatial and spectral study of the explosion sites. We used the properties of the parent stellar population of the coeval supernova progenitor star to derive its metallicity and initial mass (c.f. Paper I). The spectrum of the parent stellar population yields the estimates of metallicity via strong-line method, and age via comparison with simple stellar population (SSP) models. These metallicity and age parameters are adopted for the progenitor star. Age, or lifetime of the star, was used to derive initial (ZAMS) mass of the star by comparing with stellar evolution models. With this technique, we were able to determine metallicity and initial mass of the SN progenitors in our sample. Our result indicates that some type-II supernova progenitors may have been stars with mass comparable to SN Ib/c progenitors.Comment: Accepted to the Astronomical Journa

    On the Time Variation of Dust Extinction and Gas Absorption for Type Ia Supernovae Observed through a Nonuniform Interstellar Medium

    Get PDF
    For Type Ia supernovae (SNe Ia) observed through a nonuniform interstellar medium (ISM) in its host galaxy, we investigate whether the nonuniformity can cause observable time variations in dust extinction and in gas absorption due to the expansion of the SN photosphere with time. We show that, owing to the steep spectral index of the ISM density power spectrum, sizable density fluctuation amplitudes at the length scale of typical ISM structures () will translate to much smaller fluctuations on the scales of an SN photosphere. Therefore, the typical amplitude of time variation due to a nonuniform ISM, of absorption equivalent widths, and of extinction, would be small. As a result, we conclude that nonuniform ISM density should not impact cosmology measurements based on SNe Ia. We apply our predictions based on the ISM density power-law power spectrum to the observations of two highly reddened SNe Ia, SN 2012cu and SN 2014J

    Measuring Type Ia Supernova Distances and Redshifts From Their Multi-band Light Curves

    Get PDF
    The distance and redshift of a type Ia supernova can be determined simultaneously through its multi-band light curves. This fact may be used for imaging surveys that discover and obtain photometry for large numbers of supernovae; so many that it would be difficult to obtain a spectroscopic redshift for each. Using available supernova-analysis tools we find that there are several conditions in which a viable distance-redshift can be determined. Uncertainties in the effective distance at z~0.3 are dominated by redshift uncertainties coupled with the steepness of the Hubble law. By z~0.5 the Hubble law flattens out and distance-modulus uncertainties dominate. Observations that give S/N=50 at peak brightness and a four-day observer cadence in each of griz-bands are necessary to match the intrinsic supernova magnitude dispersion out to z=1.0. Lower S/N can be tolerated with the addition of redshift priors (e.g. from a host-galaxy photometric redshift), observations in an additional redder band, or by focusing on supernova redshifts that have particular leverage for this measurement. More stringent S/N requirements are anticipated as improved systematics control over intrinsic color, metallicity, and dust is attempted to be drawn from light curves.Comment: 16 pages, 4 figures, Astroparticle Physics, accepte

    Constraints on core-collapse supernova progenitors from explosion site integral field spectroscopy

    Full text link
    Observationally, supernovae (SNe) are divided into subclasses pertaining to their distinct characteristics. This diversity reflects the diversity in the progenitor stars. It is not entirely clear how different evolutionary paths leading massive stars to become a SN are governed by fundamental parameters such as progenitor initial mass and metallicity. This paper places constraints on progenitor initial mass and metallicity in distinct core-collapse SN subclasses, through a study of the parent stellar populations at the explosion sites. Integral field spectroscopy (IFS) of 83 nearby SN explosion sites with a median distance of 18 Mpc has been collected and analysed, enabling detection and spectral extraction of the parent stellar population of SN progenitors. From the parent stellar population spectrum, the initial mass and metallicity of the coeval progenitor are derived by means of comparison to simple stellar population models and strong-line methods. Additionally, near-infrared IFS was employed to characterise the star formation history at the explosion sites. No significant metallicity differences are observed among distinct SN types. The typical progenitor mass is found to be highest for SN Ic, followed by type Ib, then types IIb and II. SN IIn is the least associated with young stellar populations and thus massive progenitors. However, statistically significant differences in progenitor initial mass are observed only when comparing SNe IIn with other subclasses. Stripped-envelope SN progenitors with initial mass estimate lower than 25~M⊙M_\odot are found; these are thought to be the result of binary progenitors. Confirming previous studies, these results support the notion that core-collapse SN progenitors cannot arise from single-star channel only, and both single and binary channels are at play in the production of core-collapse SNe. [ABRIDGED]Comment: 18 pages, 10 figures, accepted to A&

    The Rise Times of High and Low Redshift Type Ia Supernovae are Consistent

    Get PDF
    We present a self-consistent comparison of the rise times for low- and high-redshift Type Ia supernovae. Following previous studies, the early light curve is modeled using a t-squared law, which is then mated with a modified Leibundgut template light curve. The best-fit t-squared law is determined for ensemble samples of low- and high-redshift supernovae by fitting simultaneously for all light curve parameters for all supernovae in each sample. Our method fully accounts for the non-negligible covariance amongst the light curve fitting parameters, which previous analyses have neglected. Contrary to Riess et al. (1999), we find fair to good agreement between the rise times of the low- and high-redshift Type Ia supernovae. The uncertainty in the rise time of the high-redshift Type Ia supernovae is presently quite large (roughly +/- 1.2 days statistical), making any search for evidence of evolution based on a comparison of rise times premature. Furthermore, systematic effects on rise time determinations from the high-redshift observations, due to the form of the late-time light curve and the manner in which the light curves of these supernovae were sampled, can bias the high-redshift rise time determinations by up to +3.6/-1.9 days under extreme situations. The peak brightnesses - used for cosmology - do not suffer any significant bias, nor any significant increase in uncertainty.Comment: 18 pages, 4 figures, Accepted for publication in the Astronomical Journal. Also available at http://www.lbl.gov/~nugent/papers.html Typos were corrected and a few sentences were added for improved clarit
    • …
    corecore