3,128 research outputs found

    Intermediate Mass Stars <--> Massive Stars. A workshop around causes and consequences of differing evolutionary paths

    Full text link
    The post-main sequence evolution of stars of intermediate or large masses is notoriously complex. In the recent past, a number of workshops and meetings have focused on either the Asymptotic Giant Branch of intermediate mass stars, or the evolution of massive stars. But how well defined is the boundary between these categories of objects defined? How would an observer proceed to classify stars into one or the other category? How do objects near the boundary evolve, die, and contribute to the chemical evolution of their environment? During this 3-day international workshop, 26 high quality presentations were given by specialists in the relevant fields of astrophysics, and stimulating discussions followed. It is technically impossible to provide an exhaustive census of the results and ideas that emerged. In this brief article, we choose to point to key elements of the workshop, some of which are now the topic of new collaborations and will lead to publications elsewhere. For the sake of brevity, we deliberately cite only the contributors to the workshop and no external references. Many bibliographic references can be found in the original presentations, which can be retrieved through: http://astro.u-strasbg.fr/observatoire/obs/stars2009/stars2009.html The programme workshop, which includes the titles of the individual contributions, is provided as an appendix.Comment: 8 pages, 4 figure

    Self-Assembly of Monatomic Complex Crystals and Quasicrystals with a Double-Well Interaction Potential

    Full text link
    For the study of crystal formation and dynamics we introduce a simple two-dimensional monatomic model system with a parametrized interaction potential. We find in molecular dynamics simulations that a surprising variety of crystals, a decagonal and a dodecagonal quasicrystal are self-assembled. In the case of the quasicrystals the particles reorder by phason flips at elevated temperatures. During annealing the entropically stabilized decagonal quasicrystal undergoes a reversible phase transition at 65% of the melting temperature into an approximant, which is monitored by the rotation of the de Bruijn surface in hyperspace.Comment: 4 pages, 6 figures. Physical Review Letters, in Press (April 2007

    MASSCLEAN - MASSive CLuster Evolution and ANalysis Package - Description, Tests, and Results

    Full text link
    MASSCLEAN is a new, sophisticated and robust stellar cluster image and photometry simulation package. This package is able to create color-magnitude diagrams and standard FITS images in any of the traditional optical and near-infrared bands based on cluster characteristics input by the user, including but not limited to distance, age, mass, radius and extinction. At the limit of very distant, unresolved clusters, we have checked the integrated colors created in MASSCLEAN against those from other simple stellar population (SSP) models with consistent results. Because the algorithm populates the cluster with a discrete number of tenable stars, it can be used as part of a Monte Carlo Method to derive the probabilistic range of characteristics (integrated colors, for example) consistent with a given cluster mass and age. We present the first ever mass dependent integrated colors as a function of age, derived from over 100,000 Monte Carlo runs, which can be used to improve the current age determination methods for stellar clusters.Comment: 4 pages, 5 figures, Proceedings International Astronomical Union Symposium No. 266, Star Clusters - Basic Galactic Building Blocks throughout Time and Space, Editors: Richard de Grijs & Jacques R. D. Lepin

    MASSCLEANcolors - Mass Dependent Integrated Colors for Stellar Clusters Derived from 30 Million Monte Carlo Simulations -

    Full text link
    We present Monte Carlo models of open stellar clusters with the purpose of mapping out the behavior of integrated colors with mass and age. Our cluster simulation package allows for stochastic variations in the stellar mass function to evaluate variations in integrated cluster properties. We find that UBVK colors from our simulations are consistent with simple stellar population (SSP) models, provided the cluster mass is large, Mcluster >= 10^6 M_Sun. Below this mass, our simulations show two significant effects. First, the mean value of the distribution of integrated colors moves away from the SSP predictions and is less red, in the first 10^7 to 10^8 years in UBV colors, and for all ages in (V - K). Second, the 1\sigma dispersion of observed colors increases significantly with lower cluster mass. The former we attribute to the reduced number of red luminous stars in most of the lower mass clusters and the later we attribute to the increased stochastic effect of a few of these stars on lower mass clusters. This later point was always assumed to occur, but we now provide the first public code able to quantify this effect. We are completing a more extensive database of magnitudes and colors as a function of stellar cluster age and mass that will allow the determination of the correlation coefficients among different bands, and improve estimates of cluster age and mass from integrated photometry.Comment: 11 pages, 5 figures, submitted to Astrophysical Journal Letter

    Age and Mass for 920 LMC Clusters Derived from 100 Million Monte Carlo Simulations

    Full text link
    We present new age and mass estimates for 920 stellar clusters in the Large Magellanic Cloud (LMC) based on previously published broad-band photometry and the stellar cluster analysis package, MASSCLEANage. Expressed in the generic fitting formula, d^{2}N/dM dt ~ M^{\alpha} t^{\beta}, the distribution of observed clusters is described by \alpha = -1.5 to -1.6 and \beta = -2.1 to -2.2. For 288 of these clusters, ages have recently been determined based on stellar photometric color-magnitude diagrams, allowing us to gauge the confidence of our ages. The results look very promising, opening up the possibility that this sample of 920 clusters, with reliable and consistent age, mass and photometric measures, might be used to constrain important characteristics about the stellar cluster population in the LMC. We also investigate a traditional age determination method that uses a \chi^2 minimization routine to fit observed cluster colors to standard infinite mass limit simple stellar population models. This reveals serious defects in the derived cluster age distribution using this method. The traditional \chi^2 minimization method, due to the variation of U,B,V,R colors, will always produce an overdensity of younger and older clusters, with an underdensity of clusters in the log(age/yr)=[7.0,7.5] range. Finally, we present a unique simulation aimed at illustrating and constraining the fading limit in observed cluster distributions that includes the complex effects of stochastic variations in the observed properties of stellar clusters.Comment: Accepted for publication in The Astrophysical Journal, 37 pages, 18 figure

    Quasicrystalline Order in Binary Dipolar Systems

    Full text link
    Motivated by recent experimental findings, we investigate the possible occurrence and characteristics of quasicrystalline order in two-dimensional mixtures of point dipoles with two sorts of dipole moments. Despite the fact that the dipolar interaction potential does not exhibit an intrinsic length scale and cannot be tuned a priori to support the formation of quasicrystalline order, we find that configurations with long--range quasicrystallinity yield minima in the potential energy surface of the many particle system. These configurations emanate from an ideal or perturbed ideal decoration of a binary tiling by steepest descent relaxation. Ground state energy calculations of alternative ordered states and parallel tempering Monte-Carlo simulations reveal that the quasicrystalline configurations do not correspond to a thermodynamically stable state. On the other hand, steepest descent relaxations and conventional Monte-Carlo simulations suggest that they are rather robust against fluctuations. Local quasicrystalline order in the disordered equilibrium states can be strong.Comment: 10 pages, 7 figure

    Galaxies M32 and NGC 5102 Confirm a Near-infrared Spectroscopic Chronometer

    Get PDF
    We present near infrared (NIR) IRTF/SpeX spectra of the intermediate-age galaxy M32 and the post-starburst galaxy NGC 5102. We show that features from thermally-pulsing asymptotic giant branch (TP-AGB) and main sequence turn-off (MSTO) stars yield similar ages to those derived from optical spectra. The TP-AGB can dominate the NIR flux of a coeval stellar population between ~0.1 and ~2 Gyr, and the strong features of (especially C-rich) TP-AGB stars are useful chronometers in integrated light studies. Likewise, the Paschen series in MSTO stars is stongly dependent on age and is an indicator of a young stellar component in integrated spectra. We define four NIR spectroscopic indices to measure the strength of absorption features from both C-rich TP-AGB stars and hydrogen features in main sequence stars, in a preliminary effort to construct a robust chronometer that probes the contributions from stars in different evolutionary phases. By comparing the values of the indices measured in M32 and NGC 5102 to those in the Maraston (2005) stellar population synthesis models for various ages and metallicities, we show that model predictions for the ages of the nuclei of M32 and NGC 5102 agree with previous results obtained from integrated optical spectroscopy and CMD analysis of the giant branches. The indices discriminate between an intermediate age population of ~3-4 Gyr, a younger population of <1 Gyr, and can also detect the signatures of very young (<100 Myr) populations.Comment: 10 pages, 3 figures, Accepted for publication in Astrophysical Journal Letter
    corecore