1,291 research outputs found

    IC10~X-1/NGC300~X-1: the very immediate progenitors of BH-BH binaries

    Full text link
    We investigate the future evolution of two extragalactic X-ray binaries: IC10 X-1 and NGC300 X-1. Each of them consists of a high mass BH (\sim 20-30 \msun) accreting from a massive WR star companion (\gtrsim 20 \msun), and both are located in low metallicity galaxies. We analyze the current state of the systems and demonstrate that both systems will very quickly (≲0.3\lesssim 0.3 Myr) form close BH-BH binaries with the short coalescence time (∼3\sim 3 Gyr) and large chirp mass (\sim 15 \msun). The formation of BH-BH system seems unavoidable, as {\em (i)} WR companions are well within their Roche lobes and they do not expand so no Roche lobe overflow is expected, {\em (ii)} even intense WR wind mass loss does not remove sufficient mass to prohibit the formation of the second BH, {\em (ii)} even if BH receives the large natal kick, the systems are very closely bound and are almost impossible to disrupt. As there are two such immediate BH-BH progenitor systems within 2 Mpc and as the current gravitational wave instruments LIGO/VIRGO (initial stage) can detect such massive BH-BH mergers out to ∼200\sim 200 Mpc, the empirically estimated detection rate of such inspirals is R=3.36−2.92+8.29R=3.36^{+8.29}_{-2.92} at the 99% confidence level. If there is no detection in the current LIGO/VIRGO data (unreleased year of s6s6 run), the existence of these two massive BH systems poses an interesting challenge. Either the gravitational radiation search is not sensitive to massive inspirals or there is some fundamental misunderstanding of stellar evolution physics leading directly to the formation of BH-BH binaries.Comment: 9 pages, resubmitted to ApJ with major extensio

    The effect of metallicity on the detection prospects for gravitational waves

    Full text link
    Data from the SDSS (300,000 galaxies) indicates that recent star formation (within the last 1 billion years) is bimodal: half the stars form from gas with high amounts of metals (solar metallicity), and the other half form with small contribution of elements heavier than Helium (10-30% solar). Theoretical studies of mass loss from the brightest stars derive significantly higher stellar-origin BH masses (30-80 Msun) than previously estimated for sub-solar compositions. We combine these findings to estimate the probability of detecting gravitational waves (GWs) arising from the inspiral of double compact objects. Our results show that a low metallicity environment significantly boosts the formation of double compact object binaries with at least one BH. In particular, we find the GW detection rate is increased by a factor of 20 if the metallicity is decreased from solar (as in all previous estimates) to a 50-50 mixture of solar and 10% solar metallicity. The current sensitivity of the two largest instruments to NS-NS binary inspirals (VIRGO: 9 Mpc; LIGO: 18) is not high enough to ensure a first detection. However, our results indicate that if a future instrument increased the sensitivity to 50-100 Mpc, a detection of GWs would be expected within the first year of observation. It was previously thought that NS-NS inspirals were the most likely source for GW detection. Our results indicate that BH-BH binaries are 25-times more likely sources than NS-NS systems and that we are on the cusp of GW detection.Comment: 4 pages of text, 2 figures, 2 tables (ApJ Letters, accepted

    The fate of Cyg X-1: an empirical lower limit on BH-NS merger rate

    Full text link
    The recent distance determination allowed precise estimation of the orbital parameters of Cyg X-1, which contains a massive 14.8 Msun BH with a 19.2 Msun O star companion. This system appears to be the clearest example of a potential progenitor of a BH-NS system. We follow the future evolution of Cyg X-1, and show that it will soon encounter a Roche lobe overflow episode, followed shortly by a Type Ib/c supernova and the formation of a NS. It is demonstrated that in majority of cases (70%) the supernova and associated natal kick disrupts the binary due to the fact that the orbit expanded significantly in the Roche lobe overflow episode. In the reminder of cases (30%) the newly formed BH-NS system is too wide to coalesce in the Hubble time. Only sporadically (1%) a Cyg X-1 like binary may form a coalescing BH-NS system given a favorable direction and magnitude of the natal kick. If Cyg X-1 like channel (comparable mass BH-O star bright X-ray binary) is the only or dominant way to form BH-NS binaries in the Galaxy we can estimate the empirical BH-NS merger rate in the Galaxy at the level of 0.001 per Myr. This rate is so low that the detection of BH-NS systems in gravitational radiation is highly unlikely, generating Advanced LIGO/VIRGO detection rates at the level of only 1 per century. If BH-NS inspirals are in fact detected, it will indicate that the formation of these systems proceeds via some alternative and yet unobserved channels.Comment: 5 pages, ApJ Letters (accepted

    Double Compact Objects as Low-frequency Gravitational Wave Sources

    Get PDF
    We study the Galactic field population of double compact objects (NS-NS, BH-NS, BH-BH binaries) to investigate the number (if any) of these systems that can potentially be detected with LISA at low gravitational-wave frequencies. We calculate the Galactic numbers and physical properties of these binaries and show their relative contribution from the disk, bulge and halo. Although the Galaxy hosts 10^5 double compact object binaries emitting low-frequency gravitational waves, only a handful of these objects in the disk will be detectable with LISA, but none from the halo or bulge. This is because the bulk of these binaries are NS-NS systems with high eccentricities and long orbital periods (weeks/months) causing inefficient signal accumulation (small number of signal bursts at periastron passage in 1 yr of LISA observations) rendering them undetectable in the majority of these cases. We adopt two evolutionary models that differ in their treatment of the common envelope phase that is a major (and still mostly unknown) process in the formation of close double compact objects. Depending on the adopted evolutionary model, our calculations indicate the likely detection of about 4 NS-NS binaries and 2 BH-BH systems (model A; likely survival of progenitors through CE) or only a couple of NS-NS binaries (model B; suppression of the double compact object formation due to CE mergers).Comment: 12 pages, ApJ accepted, major change

    Double Compact Objects I: The Significance Of The Common Envelope On Merger Rates

    Full text link
    The last decade of observational and theoretical developments in stellar and binary evolution provides an opportunity to incorporate major improvements to the predictions from populations synthesis models. We compute the Galactic merger rates for NS-NS, BH-NS, and BH-BH mergers with the StarTrack code. The most important revisions include: updated wind mass loss rates (allowing for stellar mass black holes up to 80 \msun), a realistic treatment of the common envelope phase (a process that can affect merger rates by 2--3 orders of magnitude), and a qualitatively new neutron star/black hole mass distribution (consistent with the observed "mass gap"). Our findings include: (i) The binding energy of the envelope plays a pivotal role in determining whether a binary merges within a Hubble time. (ii) Our description of natal kicks from supernovae plays an important role, especially for the formation of BH-BH systems. (iii) The masses of BH-BH systems can be substantially increased in the case of low metallicities or weak winds. (iv) Certain combinations of parameters underpredict the Galactic NS-NS merger rate, and can be ruled out. {\em (v)} Models incorporating delayed supernovae do not agree with the observed NS/BH "mass gap", in accordance with our previous work. This is the first in a series of three papers. The second paper will study the merger rates of double compact objects as a function of redshift, star formation rate, and metallicity. In the third paper we will present the detection rates for gravitational wave observatories, using up-to-date signal waveforms and sensitivity curves.Comment: 41 pages, 20 figures, accepted for ApJ & new model

    Binary compact object coalescence rates: The role of elliptical galaxies

    Full text link
    We estimate binary compact object merger detection rates for LIGO, including the binaries formed in ellipticals long ago. Specifically, we convolve hundreds of model realizations of elliptical- and spiral-galaxy population syntheses with a model for elliptical- and spiral-galaxy star formation history as a function of redshift. Our results favor local merger rate densities of 4\times 10^{-3} {Mpc}^{-3}{Myr}^{-1} for binary black holes (BH), 3\times 10^{-2} {Mpc}^{-3}{Myr}^{-1} for binary neutron stars (NS), and 10^{-2} {Mpc}^{-3}{Myr}^{-1} for BH-NS binaries. Mergers in elliptical galaxies are a significant fraction of our total estimate for BH-BH and BH-NS detection rates; NS-NS detection rates are dominated by the contribution from spiral galaxies. Using only models that reproduce current observations of Galactic NS-NS binaries, we find slightly higher rates for NS-NS and largely similar ranges for BH-NS and BH-BH binaries. Assuming a detection signal-to-noise ratio threshold of 8 for a single detector (as part of a network), corresponding to radii \Cv of the effective volume inside of which a single LIGO detector could observe the inspiral of two 1.4 M_\sun neutron stars of 14 Mpc and 197 Mpc, for initial and advanced LIGO, we find event rates of any merger type of 2.9* 10^{-2} -- 0.46 and 25-400 per year (at 90% confidence level), respectively. We also find that the probability P_{detect} of detecting one or more mergers with this single detector can be approximated by (i) P_{detect}\simeq 0.4+0.5\log (T/0.01{yr}), assuming \Cv=197 {Mpc} and it operates for T years, for T between 2 days and 0.1 {yr}); or by (ii) P_{detect}\simeq 0.5 + 1.5 \log \Cv/32{Mpc}, for one year of operation and for \Cv between 20 and 70 Mpc. [ABRIDGED]Comment: 22 pages, 11 figures. Accepted by ApJ. v2 adds several figures, an electronic-only table of all intermediate binary evolution simulations (tab1.txt here), and new subsections outlining broader significance (e.g., 5.4; 4.6; 6.1

    Double and single recycled pulsars: an evolutionary puzzle?

    Get PDF
    We investigate the statistics of isolated recycled pulsars and double neutron star binaries in the Galactic disk. Since recycled pulsars are believed to form through accretion and spinup in close binaries, the isolated objects presumably originate from disrupted progenitors of double neutron stars. There are a comparable number of double neutron star systems compared to isolated recycled pulsars. We find that standard evolutionary models cannot explain this fact, predicting several times the number of isolated recycled pulsars than those in double neutron star systems. We demonstrate, through population synthesis calculations, that the velocity distribution of isolated recycled pulsars is broader than for binary systems. When this is accounted for in a model for radio pulsar survey selection effects, which include the effects of Doppler smearing for the double neutron star binaries, we find that there is a small (25%) bias towards the detection of double neutron star systems. This bias, however, is not significant enough to explain the observational discrepancy if standard (sigma = 265 km/s) neutron star natal kick velocities are invoked in binary population syntheses. Population syntheses in which the 1D Maxwellian velocity dispersion of the natal kick is sigma=170 km/s are consistent with the observations. These conclusions further support earlier findings the neutron stars formed in close interacting binaries receive significantly smaller natal kicks than the velocities of Galactic single pulsars would seem to indicate.Comment: 12 pages, MNRAS (accepted

    The eccentricity distribution of compact binaries

    Full text link
    The current gravitational wave detectors have reached their operational sensitivity and are nearing detection of compact object binaries. In the coming years, we expect that the Advanced LIGO/VIRGO will start taking data. At the same time, there are plans for third generation ground-based detectors such as the Einstein Telescope, and space detectors such as DECIGO. We discuss the eccentricity distribution of inspiral compact object binaries during they inspiral phase. We analyze the expected distributions of eccentricities at three frequencies that are characteristic of three future detectors: Advanced LIGO/VIRGO (30 Hz), Einstein Telescope (3 Hz), and DECIGO (0.3 Hz). We use the StarTrack binary population code to investigate the properties of the population of compact binaries in formation. We evolve their orbits until the point that they enter a given detector sensitivity window and analyze the eccentricity distribution at that time. We find that the eccentricities of BH-BH and BH-NS binaries are quite small when entering the Advanced LIGO/VIRGO detector window for all considered models of binary evolution. Even in the case of the DECIGO detector, the typical eccentricities of BH-BH binaries are below 10^{-4}, and the BH-NS eccentricities are smaller than 10^{-3}. Some fraction of NS-NS binaries may have significant eccentricities. Within the range of considered models, we found that a fraction of between 0.2% and 2% NS-NS binaries will have an eccentricity above 0.01 for the Advanced LIGO/VIRGO detectors. For the ET detector, this fraction is between 0.4% and 4%, and for the DECIGO detector it lies between 2% and 27%.Comment: 8 pages, 5 figures, accepted by A&
    • …
    corecore