11 research outputs found
Demonstration of the anthelmintic potency of marimastat in the Heligmosomoides polygyrus rodent model
In the course of a structure based drug discovery program the known anticancer candidate marimastat was uncovered as a potent inhibitor of an enzyme in nematode cuticle biogenesis. It was shown to kill Caenorhabditis elegans, and the sheep parasites Haemonchus contortus and Teladorsagia circumcinta via an entirely novel nematode-specific pathway, specifically by inhibiting cuticle-remodelling enzymes that the parasites require for the developmentally essential moulting process. This discovery prompted an investigation of the compound's effect on Heligmosomoides polygyrus parasites in a mouse model of helminth infection. Mice were administered the drug via oral gavage daily from day of infection for a period of 2 wk. A second group received the drug via intra-peritoneal implantation of an osmotic minipump for 4 wk. Control groups were administered identical volumes of water by oral gavage in both cases. Counts of H. polygyrus faecal egg and larval load showed that marimastat effected a consistent and significant reduction in egg laying, and a consistent but minor reduction in adult worm load when administered every day, starting on the first day of infection. However, the drug failed to have any significant effect on egg counts or worm burdens when administered to mice with established infections. Therefore, marimastat does not appear to show promise as an anthelmintic in gastrointestinal nematode infections, although other metalloproteases such as batimastat may prove more effective
Protection from T cell-dependent colitis by the helminth-derived immunomodulatory mimic of transforming growth factor-ß, Hp-TGM
In animal models of inflammatory colitis, pathology can be ameliorated by several intestinal helminth parasites, including the mouse nematode Heligmosomoides polygyrus. To identify parasite products that may exert anti-inflammatory effects in vivo, we tested H. polygyrus excretory-secretory (HES) products, as well as a recombinantly-expressed parasite protein, TGM, that functionally mimics the mammalian immunomodulatory cytokine TGF-β. HES and TGM showed a degree of protection in DSS-induced colitis, with a reduction in inflammatory cytokines, but did not fully block the development of pathology. HES also showed little benefit in a similar acute TNBS-induced model. However, in a T cell transfer-mediated model with RAG-deficient mice, HES reduced disease scores if administered throughout the first 2 or 4 weeks following transfer but was less effective if treatment was delayed until 14 days after T cell transfer. Recombinant TGM similarly dampened colitis in RAG-deficient recipients of effector T cells, and was effective even if introduced only once symptoms had begun to be manifest. These results are a promising indication that TGM may replicate, and even surpass, the modulatory properties of native parasite HES
TGF-β in tolerance, development and regulation of immunity
AbstractThe TGF-β superfamily is an ancient metazoan protein class which cuts across cell and tissue differentiation, developmental biology and immunology. Its many members are regulated at multiple levels from intricate control of gene transcription, post-translational processing and activation, and signaling through overlapping receptor structures and downstream intracellular messengers. We have been interested in TGF-β homologues firstly as key players in the induction of immunological tolerance, the topic so closely associated with Ray Owen. Secondly, our interests in how parasites may manipulate the immune system of their host has also brought us to study the TGF-β pathway in infections with longlived, essentially tolerogenic, helminth parasites. Finally, within the spectrum of mammalian TGF-β proteins is an exquisitely tightly-regulated gene, anti-Müllerian hormone (AMH), whose role in sex determination underpins the phenotype of freemartin calves that formed the focus of Ray’s seminal work on immunological tolerance
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures
Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
First Season MWA Phase II Epoch of Reionization Power Spectrum Results at Redshift 7
The compact configuration of Phase II of the Murchison Widefield Array (MWA) consists of both a redundant subarray and pseudo-random baselines, offering unique opportunities to perform sky-model and redundant interferometric calibration. The highly redundant hexagonal cores give improved power spectrum sensitivity. In this paper, we present the analysis of nearly 40 hr of data targeting one of the MWA's epoch of reionization (EoR) fields observed in 2016. We use both improved analysis techniques presented in Barry et al. and several additional techniques developed for this work, including data quality control methods and interferometric calibration approaches. We show the EoR power spectrum limits at redshift 6.5, 6.8, and 7.1 based on our deep analysis on this 40 hr data set. These limits span a range in k-space of 0.18 h Mpc-1 < k < 1.6 h Mpc-1, with a lowest measurement of Δ2 ≤ 2.39 × 103 mK2 at k = 0.59 h Mpc-1 and z = 6.5
Enteric helminth-induced type I interferon signaling protects against pulmonary virus infection through interaction with the microbiota
Helminth parasites have been reported to have beneficial immunomodulatory effects in patients with allergic and autoimmune conditions and detrimental consequences in patients with tuberculosis and some viral infections. Their role in coinfection with respiratory viruses is not clear.
Here we investigated the effects of strictly enteric helminth infection with Heligmosomoides polygyrus on respiratory syncytial virus (RSV) infection in a mouse model.
A murine helminth/RSV coinfection model was developed. Mice were infected by means of oral gavage with 200 stage 3 H polygyrus larvae. Ten days later, mice were infected intranasally with either RSV or UV-inactivated RSV.
H polygyrus-infected mice showed significantly less disease and pulmonary inflammation after RSV infection associated with reduced viral load. Adaptive immune responses, including TH2 responses, were not essential because protection against RSV was maintained in Rag1(-/-) and Il4rα(-/-) mice. Importantly, H polygyrus infection upregulated expression of type I interferons and interferon-stimulated genes in both the duodenum and lung, and its protective effects were lost in both Ifnar1(-/-) and germ-free mice, revealing essential roles for type I interferon signaling and microbiota in H polygyrus-induced protection against RSV.
These data demonstrate that a strictly enteric helminth infection can have remote protective antiviral effects in the lung through induction of a microbiota-dependent type I interferon response
Fracture fixation in the operative management of hip fractures (FAITH): an international, multicentre, randomised controlled trial
Background Reoperation rates are high after surgery for hip fractures. We investigated the effect of a sliding hip screw versus cancellous screws on the risk of reoperation and other key outcomes. Methods For this international, multicentre, allocation concealed randomised controlled trial, we enrolled patients aged 50 years or older with a low-energy hip fracture requiring fracture fixation from 81 clinical centres in eight countries. Patients were assigned by minimisation with a centralised computer system to receive a single large-diameter screw with a side-plate (sliding hip screw) or the present standard of care, multiple small-diameter cancellous screws. Surgeons and patients were not blinded but the data analyst, while doing the analyses, remained blinded to treatment groups. The primary outcome was hip reoperation within 24 months after initial surgery to promote fracture healing, relieve pain, treat infection, or improve function. Analyses followed the intention-to-treat principle. This study was registered with ClinicalTrials.gov, number NCT00761813. Findings Between Mar
Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC
DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 6 6 m liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019–2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties.DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6x6x6m3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties