141 research outputs found

    Profiling of Substrate Specificities of 3C-Like Proteases from Group 1, 2a, 2b, and 3 Coronaviruses

    Get PDF
    BACKGROUND: Coronaviruses (CoVs) can be classified into alphacoronavirus (group 1), betacoronavirus (group 2), and gammacoronavirus (group 3) based on diversity of the protein sequences. Their 3C-like protease (3CL(pro)), which catalyzes the proteolytic processing of the polyproteins for viral replication, is a potential target for anti-coronaviral infection. METHODOLOGY/PRINCIPAL FINDINGS: Here, we profiled the substrate specificities of 3CL(pro) from human CoV NL63 (group 1), human CoV OC43 (group 2a), severe acute respiratory syndrome coronavirus (SARS-CoV) (group 2b) and infectious bronchitis virus (IBV) (group 3), by measuring their activity against a substrate library of 19 × 8 of variants with single substitutions at P5 to P3' positions. The results were correlated with structural properties like side chain volume, hydrophobicity, and secondary structure propensities of substituting residues. All 3CL(pro) prefer Gln at P1 position, Leu at P2 position, basic residues at P3 position, small hydrophobic residues at P4 position, and small residues at P1' and P2' positions. Despite 3CL(pro) from different groups of CoVs share many similarities in substrate specificities, differences in substrate specificities were observed at P4 positions, with IBV 3CL(pro) prefers P4-Pro and SARS-CoV 3CL(pro) prefers P4-Val. By combining the most favorable residues at P3 to P5 positions, we identified super-active substrate sequences 'VARLQ↓SGF' that can be cleaved efficiently by all 3CL(pro) with relative activity of 1.7 to 3.2, and 'VPRLQ↓SGF' that can be cleaved specifically by IBV 3CL(pro) with relative activity of 4.3. CONCLUSIONS/SIGNIFICANCE: The comprehensive substrate specificities of 3CL(pro) from each of the group 1, 2a, 2b, and 3 CoVs have been profiled in this study, which may provide insights into a rational design of broad-spectrum peptidomimetic inhibitors targeting the proteases

    Profiling of Substrate Specificity of SARS-CoV 3CLpro

    Get PDF
    BACKGROUND: The 3C-like protease (3CL(pro)) of severe acute respiratory syndrome-coronavirus is required for autoprocessing of the polyprotein, and is a potential target for treating coronaviral infection. METHODOLOGY/PRINCIPAL FINDINGS: To obtain a thorough understanding of substrate specificity of the protease, a substrate library of 198 variants was created by performing saturation mutagenesis on the autocleavage sequence at P5 to P3' positions. The substrate sequences were inserted between cyan and yellow fluorescent proteins so that the cleavage rates were monitored by in vitro fluorescence resonance energy transfer. The relative cleavage rate for different substrate sequences was correlated with various structural properties. P5 and P3 positions prefer residues with high β-sheet propensity; P4 prefers small hydrophobic residues; P2 prefers hydrophobic residues without β-branch. Gln is the best residue at P1 position, but observable cleavage can be detected with His and Met substitutions. P1' position prefers small residues, while P2' and P3' positions have no strong preference on residue substitutions. Noteworthy, solvent exposed sites such as P5, P3 and P3' positions favour positively charged residues over negatively charged one, suggesting that electrostatic interactions may play a role in catalysis. A super-active substrate, which combined the preferred residues at P5 to P1 positions, was found to have 2.8 fold higher activity than the wild-type sequence. CONCLUSIONS/SIGNIFICANCE: Our results demonstrated a strong structure-activity relationship between the 3CL(pro) and its substrate. The substrate specificity profiled in this study may provide insights into a rational design of peptidomimetic inhibitors

    The Enhanced metastatic potential of hepatocellular carcinoma (HCC) cells with sorafenib resistance

    Get PDF
    Acquired resistance towards sorafenib treatment was found in HCC patients, which results in poor prognosis. To investigate the enhanced metastatic potential of sorafenib resistance cells, sorafenib-resistant (SorR) cell lines were established by long-term exposure of the HCC cells to the maximum tolerated dose of sorafenib. Cell proliferation assay and qPCR of ABC transporter genes (ABCC1-3) were first performed to confirm the resistance of cells. Migration and invasion assays, and immunoblotting analysis on the expression of epithelial to mesenchymal transition (EMT) regulatory proteins were performed to study the metastatic potential of SorR cells. The expression of CD44 and CD133 were studied by flow cytometry and the gene expressions of pluripotency factors were studied by qPCR to demonstrate the enrichment of cancer stem cells (CSCs) in SorR cells. Control (CTL) and SorR cells were also injected orthotopically to the livers of NOD-SCID mice to investigate the development of lung metastasis. Increased expressions of ABCC1-3 were found in SorR cells. Enhanced migratory and invasive abilities of SorR cells were observed. The changes in expression of EMT regulatory proteins demonstrated an activation of the EMT process in SorR cells. Enriched proportion of CD44+ and CD44+CD133 + cells were also observed in SorR cells. All (8/8) mice injected with SorR cells demonstrated lung metastasis whereas only 1/8 mouse injected with CTL cells showed lung metastasis. HCC cells with sorafenib resistance demonstrated a higher metastatic potential, which may be due to the activated EMT process. Enriched CSCs were also demonstrated in the sorafenib resistant cells. This study suggests that advanced HCC patients with acquired sorafenib resistance may have enhanced tumor growth or distant metastasis, which raises the concern of long-term sorafenib treatment in advanced HCC patients who have developed resistance of sorafenib. © 2013 Chow et al.published_or_final_versio

    Evolution of DNA methylome from precancerous lesions to invasive lung adenocarcinomas

    Get PDF
    The evolution of DNA methylome and methylation intra-tumor heterogeneity (ITH) during early carcinogenesis of lung adenocarcinoma has not been systematically studied. We perform reduced representation bisulfite sequencing of invasive lung adenocarcinoma and its precursors, atypical adenomatous hyperplasia, adenocarcinoma in situ and minimally invasive adenocarcinoma. We observe gradual increase of methylation aberrations and significantly higher level of methylation ITH in later-stage lesions. The phylogenetic patterns inferred from methylation aberrations resemble those based on somatic mutations suggesting parallel methylation and genetic evolution. De-convolution reveal higher ratio of T regulatory cells (Tregs) versus CD8 + T cells in later-stage diseases, implying progressive immunosuppression with neoplastic progression. Furthermore, increased global hypomethylation is associated with higher mutation burden, copy number variation burden and AI burden as well as higher Treg/CD8 ratio, highlighting the potential impact of methylation on chromosomal instability, mutagenesis and tumor immune microenvironment during early carcinogenesis of lung adenocarcinomas

    Immune evolution from preneoplasia to invasive lung adenocarcinomas and underlying molecular features

    Get PDF
    The mechanism by which anti-cancer immunity shapes early carcinogenesis of lung adenocarcinoma (ADC) is unknown. In this study, we characterize the immune contexture of invasive lung ADC and its precursors by transcriptomic immune profiling, T cell receptor (TCR) sequencing and multiplex immunofluorescence (mIF). Our results demonstrate that anti-tumor immunity evolved as a continuum from lung preneoplasia, to preinvasive ADC, minimally-invasive ADC and frankly invasive lung ADC with a gradually less effective and more intensively regulated immune response including down-regulation of immune-activation pathways, up-regulation of immunosuppressive pathways, lower infiltration of cytotoxic T cells (CTLs) and anti-tumor helper T cells (Th), higher infiltration of regulatory T cells (Tregs), decreased T cell clonality, and lower frequencies of top T cell clones in later-stages. Driver mutations, chromosomal copy number aberrations (CNAs) and aberrant DNA methylation may collectively impinge host immune responses and facilitate immune evasion, promoting the outgrowth of fit subclones in preneoplasia into dominant clones in invasive ADC

    Genomic heterogeneity of multiple synchronous lung cancer

    Get PDF
    Multiple synchronous lung cancers (MSLCs) present a clinical dilemma as to whether individual tumours represent intrapulmonary metastases or independent tumours. In this study we analyse genomic profiles of 15 lung adenocarcinomas and one regional lymph node metastasis from 6 patients with MSLC. All 15 lung tumours demonstrate distinct genomic profiles, suggesting all are independent primary tumours, which are consistent with comprehensive histopathological assessment in 5 of the 6 patients. Lung tumours of the same individuals are no more similar to each other than are lung adenocarcinomas of different patients from TCGA cohort matched for tumour size and smoking status. Several known cancer-associated genes have different mutations in different tumours from the same patients. These findings suggest that in the context of identical constitutional genetic background and environmental exposure, different lung cancers in the same individual may have distinct genomic profiles and can be driven by distinct molecular events

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore