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The mechanism by which anti-cancer immunity shapes early carcinogenesis of lung adeno-

carcinoma (ADC) is unknown. In this study, we characterize the immune contexture of

invasive lung ADC and its precursors by transcriptomic immune profiling, T cell receptor

(TCR) sequencing and multiplex immunofluorescence (mIF). Our results demonstrate that

anti-tumor immunity evolved as a continuum from lung preneoplasia, to preinvasive ADC,

minimally-invasive ADC and frankly invasive lung ADC with a gradually less effective and

more intensively regulated immune response including down-regulation of immune-

activation pathways, up-regulation of immunosuppressive pathways, lower infiltration of

cytotoxic T cells (CTLs) and anti-tumor helper T cells (Th), higher infiltration of regulatory

T cells (Tregs), decreased T cell clonality, and lower frequencies of top T cell clones in later-

stages. Driver mutations, chromosomal copy number aberrations (CNAs) and aberrant DNA

methylation may collectively impinge host immune responses and facilitate immune evasion,

promoting the outgrowth of fit subclones in preneoplasia into dominant clones in

invasive ADC.
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Despite promising advances in clinical management, lung
cancer remains the leading cause of cancer death world-
wide, largely due to diagnosis at advanced stages when

cures are generally unachievable. Computed tomography (CT)
scan-guided lung cancer screening has demonstrated a reduction
of lung cancer mortality by 26–61%1, underscoring the need for
early detection and intervention as a crucial strategy to reduce
lung cancer incidence and mortality. However, the outcomes of
many randomized clinical trials on primary lung cancer preven-
tion have been disappointing1, primarily due to our rudimentary
knowledge of early phases in lung cancer development. In depth
understanding of the molecular mechanisms of early lung carci-
nogenesis may accelerate the development of precise diagnostic as
well as effective preventive and therapeutic strategies.

Lung adenocarcinoma (ADC) is the most common histological
subtype of lung cancer. The classification of early-stage lung ADC
and its precursors has been revised by several professional
societies to include a spectrum from atypical adenomatous
hyperplasia (AAH), the only recognized preneoplasia to lung
ADC, to preinvasive adenocarcinoma in situ (AIS), to micro-
invasive lesions termed minimally invasive adenocarcinoma
(MIA), and eventually frankly invasive ADC2–5. Early-stage lung
ADCs and their precursors usually present as lung nodules with
distinct radiologic features called ground glass opacity (GGO).
These lung nodules are often referred to as indeterminate pul-
monary nodules (IPNs) without histologic diagnosis, as the
diagnostic yield from biopsy of GGO-predominant nodules is low
and surgical resection is not the standard of care. This has sub-
sequently led to scarcity of adequate materials to investigate the
molecular landscape of lung ADC precursors.

Carcinogenesis results from progressive accumulation of
molecular abnormalities (molecular evolution) and escape from
host immune surveillance (immunoediting). Our pilot studies of
gene expression and genomic profiling on lung ADC precursors
have demonstrated distinct transcriptomic features6 and pro-
gressive genomic evolution along the spectrum of AAH to AIS,
MIA, and ADC7. However, the extent to which immunoediting
sculpts early carcinogenesis of lung ADC and the underlying
genomic and epigenetic alterations associated with these immune
features still remain undetermined. In the current study, we
perform immune gene expression profiling, T cell receptor (TCR)
sequencing and multiplex immunofluorescence (mIF) staining on
a cohort of resected AAH, AIS, MIA and invasive ADC lesions
and paired morphologically normal lung tissues (NL) to delineate
the evolution of immune contexture, particularly the T cell
landscape, across different stages of early lung ADC pathogenesis.
We further leverage whole exome sequencing (WES)7 and
methylation data8 from the same cohort of IPNs to unravel the
genomic and methylation alterations that may impinge on the
immune contexture (Supplementary Data 1 and Fig. 1).

Results
Decreased overall immunity in invasive lung adenocarcinomas
compared to their precursors. To assess the dynamic changes in
the immune contexture during early lung carcinogenesis, we
performed immune profiling using the nCounter PanCancer
Immune Profiling Panel (NanoString Technologies, Inc.) com-
posed of 770 genes including ~700 immune-related genes cov-
ering both innate and adaptive immune response9 on resected
lung ADCs and their precursors (n= 9 for AAH, n= 11 for AIS,
n= 21 for MIA, and n= 6 for invasive ADC) (Supplementary
Data 2). There was no difference in age (p= 0.55, Kruskal–Wallis
test), sex (p= 0.31, Fisher’s exact test) or smoking status (p=
0.35, Fisher’s exact test) between patients with pulmonary

nodules of different histologic stages. A total of 291 differentially
expressed genes (DEGs; FDR < 0.1%) were identified. Interest-
ingly, changes in the majority of DEGs, regardless of their
directions, exhibited a progressive pattern along the spectrum
from NL, to AAH, AIS, MIA, and ADC (Supplementary Data 3).
Examples of progressively increased genes included immune
suppressive genes CD47 (protection of cancer cells from immune
cell killing)10, CD276 (inhibition of immune responses)11 and
CTLA4 (checkpoint molecule)12, while progressively decreased
genes included ENTPD1 (expressed on tumor-specific T cells)13,
granzyme B (GZMB), and perforin 1 (PRF1) (cytotoxic molecules
produced by T lymphocytes and natural killer cells)14,15 (Sup-
plementary Fig. 1). Functional pathway analysis of these 291
DEGs revealed 26 significantly de-regulated pathways (–log(p-
value) > 10 and an absolute z-score > 0.5) associated with neo-
plastic evolution from NL to invasive ADC, of which, 23 were
down-regulated (Fig. 2a) in later-stage IPNs. On the other hand,
all three up-regulated pathways in later-stage IPNs (systemic
lupus erythematosus (SLE) in B cell signaling, T cell exhaustion
signaling, and PARP signaling pathways) could potentially impair
immune response16–18. These results indicated that immune
evolution progressed as a continuum from preneoplasia to inva-
sive lung ADC with an overall decreased immunity in later-stage
diseases.

Intensively regulated anti-tumor immune response in invasive
lung adenocarcinomas versus their precursors. We next de-
convoluted immune gene expression profiling data using
TIMER19 to evaluate the changes in immune cell composition. As
shown in Fig. 2b, CD4+ T lymphocyte infiltration progressively
increased from NL to invasive ADC. Conversely, infiltration of
CD8+ T lymphocytes progressively decreased with neoplastic
evolution (Fig. 2c) leading to significantly higher CD4/CD8 ratio
in later-stage lesions (Fig. 2d). To validate these findings, we
applied TIMER to RNA sequencing (RNA-seq) data from a
previously published independent cohort of lung ADC
precursors6 and observed similar results (Supplementary Fig. 2).

Although CD8+ T cells are widely accepted to be anti-tumor20,
the functions of CD4+ T cells are more complicated. CD4+
T cells are highly heterogeneous in phenotype, and classified into
T helpers including T helper 1 (Th1, anti-viral/anti-tumor), T
helper 2 (Th2, allergic responses), T helper 17 (Th17, auto-
immune and pathogen responses), and Tregs (immune
suppressive)21–24. Recent work has also described populations
of CD4+ T cells with cytotoxic potential (ThCTLs), which could
be beneficial to anti-tumor responses25. To characterize the
phenotype of infiltrated T cells in these IPNs, we assessed T cell
markers by mIF (Supplementary Table 1 and Supplementary
Fig. 3) on a subset of IPNs with materials available. As anti-CD4
antibodies are known to be problematic for mIF26, CD3+/CD8–
T cells were used to represent CD4+ T cells for mIF. As shown in
Supplementary Fig. 4, the proportion of CD4+ T cells inferred by
immune gene expression profiling was positively associated with
total T cells (CD3+), Tregs (CD3+CD8–FoxP3+), but not with
ThCTLs (CD3+CD8–GZMB+) from mIF. Conversely, CD8+
T cells inferred by immune gene expression profiling were
positively associated with CD8+CTLs (CD3+CD8+GZMB+),
but negatively associated with Tregs (CD3+CD8–FoxP3+) by
mIF. The CD4/CD8 ratio inferred by gene expression data was
also positively associated with Treg/CD8+CTL (CD3+CD8−
FoxP3+/CD3+CD8+GZMB+) ratio by mIF. Despite ThCTLs
(CD3+CD8–GZMB+) and Tregs (CD3+CD8–FoxP3+) only
representing a minority of CD4+ T cells in these IPNs
(Supplementary Fig. 5), normal lung tissues had the highest
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proportion of ThCTLs (Supplementary Fig. 5a) and the lowest
proportion of Tregs (Supplementary Fig. 5b) indicating that
immune evasion may have started as early as the preneoplastic
stage. Of note, though present at low abundance, Tregs increased
in later-stage IPNs indicating further negative immune regulation
along with neoplastic evolution (Supplementary Fig. 5b).

In addition, we attempted to assess T helper polarization in
different stages of IPNs. Due to limited cell surface markers tested
in the current mIF panel, we derived T helper signatures using
gene expression data. These analyses revealed that the ratios of
Th2/Th1 and Th17/Th1 are significantly higher in later-stage
IPNs (Supplementary Fig. 6a, b) suggesting a skewing of T cells
towards a less anti-tumor phenotype, though functional studies
are needed to confirm these observations. Moreover, ratios of
Th2/Th1 and Th17/Th1 derived from RNA-seq data of an
independent cohort of AAH and ADC (GSE102511)6 revealed the
same trend (Supplementary Fig. 6c, d). Collectively, these results
suggest that immune evolution progressed from preneoplasia to
invasive lung ADC with potential loss of anti-tumor responses
and gain of suppressive or ineffective subsets of immune cells.

Progressively divergent TCR repertoire with neoplastic pro-
gression. Given the central role of T cells in anti-tumor immune
surveillance, we next sought to investigate the T cell repertoire27

by T cell receptor (TCR) sequencing and compared the IPNs of
different stages for complementary TCR metrics, including top
frequent T cell clones, T cell clonality, T cell density, and T cell
diversity. As shown in Fig. 3a and Supplementary Fig. 7, the top T
cell clones accounted for the highest proportion of T cell clones in
NLs, and gradually decreased in AAH, AIS, MIA, and invasive
ADC (p < 0.0001) implying reduced T cell expansion during early
carcinogenesis of lung ADC. Moreover, NL showed the highest T
cell clonality, while later-stage IPNs appeared to have higher T
cell density and diversity, but lower T cell clonality (Fig. 3b–d). Of

note, both T cell density and T cell diversity were positively
correlated with CD4+ T cells inferred by immune gene expres-
sion profiling, as well as CD3+CD8– T cells and Tregs (CD3+
CD8–FOXP3+) by mIF (Supplementary Fig. 8). Alternatively, T
cell clonality was positively associated with Th1 signature, CD8+
T cells inferred by immune gene expression, CD8+CTLs
(CD3+CD8+GZMB+) and ThCTLs (CD3+CD8–GZMB+) by
mIF, but negatively associated with CD4+ T cells inferred
by immune gene expression, CD3+CD8− T cells and Tregs
(CD3+CD8–FoxP3+) by mIF (Fig. 4).

In line with low T cell clonality generally indicating a lack of T
cell expansion and a suppressed T cell repertoire28, T cell
clonality showed significantly positive correlation with the
frequency of the most dominant T cell clones in these IPNs
(Supplementary Fig. 9a–d), suggesting higher T cell clonality was
associated with increased clonal expansion. Conversely, T cell
clonality was not correlated with T cell density (Supplementary
Fig. 9e) suggesting lower T cell clonality in later-stage IPNs likely
reflected reduced T cell expansion, rather than T cell exclusion.
Taken together, these results suggest that later-stage IPNs had
higher and more diverse T cell infiltration accompanied with
reduced clonal expansion. Having also observed higher Tregs,
lower CTLs and Th1 in later-stage IPNs; one plausible
explanation is that although the host immune system may have
recruited a greater number of T cells to IPNs with disease
progression, these T cells were not able to effectively respond and
expand due to increased immune suppression (e.g., increased
Tregs).

Chromosomal instability and HLA loss contributing to
impaired T cell responses. We next sought to explore the
molecular features associated with the immune contexture
observed in these lesions. Chromosomal copy number changes
have been reported to impact the immune microenvironment
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Fig. 1 The immune landscape IPNs of different stages and associated genomic and epigenomic features. Infiltration CD4+ T cells, CD8+ T cells inferred
from immune gene expression using TIMER; regulatory T cells (Tregs, CD3+CD8–FOXP3+) and CD8+cytotoxic T lymphocytes (CTLs,CD3+CD8+
granzyme B+) measured by multiplex immunofluorescence (mIF); T cell clonality and frequency of the top 100T cell clones by TCR sequencing are shown
in upper panel. Genomic alterations from whole exome sequencing (WES) including EGFR/KRAS mutations, HLA LOH, copy number variation (CNV)
burden, allelic imbalance (AI) burden, total number of mutations associated with predicted neoantigens, and total number of mutations associated with
predicted neoantigens without promoter methylation; global methylation status using long interspersed transposable elements-1 (LINE-1) as a surrogate
marker accessed by reduced representation bisulfite sequencing (RRBS) are shown in bottom panel. Data from 53 patients was used including AAH
(typical adenomatous hyperplasia), AIS (adenocarcinoma in situ), MIA (minimally invasive adenocarcinoma), and ADC (invasive adenocarcinoma).
(Source data is provided as a source data file).
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across various cancers29,30 and we have observed higher copy
number variation (CNV) burden and allelic imbalance (AI)
burden in later-stage IPNs ADC7. Therefore, we sought to explore
whether copy number changes were associated with immune
landscape of these lung ADC precursors. As shown in Supple-
mentary Fig. 10a–c, AI burden was negatively correlated with
CD8+ T cell infiltration, while positively correlated with CD4+ T
cell infiltration and CD4/CD8 T cell ratio inferred by gene
expression profiling. A similar trend was also observed with CNV
burden, although these differences did not reach statistical sig-
nificance (Supplementary Fig. 10d–f). In light of recent studies
suggesting immune evasion could be facilitated by invalid pre-
sentation of neoantigens due to loss of HLA31, we applied
LOHHLA (loss of heterozygosity in HLA) algorithm31 to WES
data of these lesions7 and observed increased incidence of LOH at
the HLA loci in later-stage IPNs with 7, 15, and 33% in AIS, MIA,
and ADC respectively, but none in AAH (Fig. 5a, p= 0.005, χ2

test). Interestingly, the IPNs with HLA LOH exhibited sig-
nificantly higher AI burden and CNV burden compared to those
without HLA LOH (Fig. 5b, c). One plausible explanation is that
the development of AI, CNV, or HLA LOH resulted from
chromosomal instability (CIN) and cells with higher levels of CIN
may lead to higher CNV/AI burdens as well as increased like-
lihood of HLA LOH, which could subsequently enable these cells
escaping from anti-tumor immune surveillance and developing
into dominant clones in the later-stage neoplastic lesions.

Aberrant DNA methylation may impact genomic alterations
and anti-tumor response during early lung cancer pathogen-
esis. Somatic mutations play central roles in activating anti-tumor
immune responses through generating neoantigens recognized by
T cells32,33. As shown in Supplementary Fig. 11, a progressive
increase in total mutation burden was observed from AAH to
AIS, MIA, and ADC. However, analysis of methylation data from
reduced representation bisulfite sequencing (RRBS) of the same
cohort of IPNs8 revealed that a significantly larger proportion of
genes exhibited promoter hypermethylation (>30% CpG methy-
lated) in later-stage lesions, thus potentially dampening the
expression of neoantigens in later-stage lesions. These data sug-
gest that promoter hypermethylation could potentially contribute
to neoantigen depletion and immune escape. Furthermore, we
assessed the impact of global methylation status, using long
interspersed transposable elements-1 (LINE-1) as a surrogate
marker34–36 on the immune microenvironment in these lesions.
Global hypomethylation significantly increased in IPNs of later
histologic stages (Supplementary Fig. 12a) and negatively corre-
lated with AI burden (Supplementary Fig. 12b), CNV burden
(Supplementary Fig. 12c), and TMB (Supplementary Fig. 12d)
indicating global hypomethylation was associated with an ele-
vated level of CIN. Interestingly, global methylation level was
negatively associated with CD4+ T cell infiltration and CD4/CD8
ratio inferred by gene expression profiling, as well as Tregs
infiltration and Treg(CD3+CD8–FOXP3+)/CD8(CD3+CD8+)

Fig. 2 Immune landscape from preneoplasia to invasive lung adenocarcinoma. a Significantly enriched functional pathways based on the 291 differentially
expressed genes by Ingenuity Pathway Analysis (IPA®; Ingenuity Systems) software. Pathways with –log (p-value) > 10 (p-values are obtained from
Fisher’s right-tailed exact test) and an absolute z-score > 0.5 are shown. Pathways that were predicted to be inhibited (negative Z scores) in later stages
are in blue and pathways that were predicted to be activated (positive Z scores) in later stages are in orange. The heights of the bars indicate the
significance of the enrichment (−log (p-value)) and the scales of the orange or blue colors represent the predicted directionality. Fractions of immune cells
including CD4+ T cells (b), CD8+ T cells (c), and CD4/CD8 ratio (d) were estimated using TIMER based on the gene expression using nCounter
PanCancer Immune Profiling Panel. Error bars indicate 95% confidence intervals and solid point represent mean value in each stage. The difference of cell
fraction among different stages was evaluated using two-sided Kruskal–Wallis H test. Data from 38 patients was used including NL (normal lung tissue),
AAH (atypical adenomatous hyperplasia), AIS (adenocarcinoma in situ), MIA (minimally invasive adenocarcinoma), and ADC (invasive adenocarcinoma).
(Source data is provided as a source data file).
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confidence intervals and solid point represent mean value in each stage. The difference of T cell matrix among different stages was evaluated using two-
sided Kruskal–Wallis H test. Data from 51 patients was used including NL (normal lung tissue), AAH (atypical adenomatous hyperplasia), AIS
(adenocarcinoma in situ), MIA (minimally invasive adenocarcinoma), and ADC (invasive adenocarcinoma). (Source data is provided as a source data file).
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Fig. 4 The correlation between T cell clonality and T cell subtypes. a Th1 (average value of marker genes IFNG, IL12A, IL12B) measured by gene
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(invasive adenocarcinoma). (Source data is provided as a source data file).
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ratio from mIF (Fig. 6), suggesting decreased global methylation
is associated with suppressive immune contexture.

Driver mutations may affect host immune response in pre/
early ADC. Cancer gene mutations are known to associate with

distinct molecular landscape and tumor immune microenviron-
ment in lung cancers. We next explored whether mutations of
EGFR and KRAS, the two most frequently mutated driver genes
in this cohort of IPNs7, were associated with the observed
immune features. Compared to EGFR-mutant lesions or double
wild-type lesions, KRAS-mutant IPNs exhibited the highest
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CD8+ T cell infiltration and lowest CD4/CD8 T cell ratio
inferred by immune gene expression; lowest Treg/CD8+ T cell
ratio by mIF as well as highest T cell clonality derived by TCR
sequencing (Supplementary Fig. 13a–d), implying the interplay
between oncogene mutations and immune surveillance during
early pathogenesis of lung adenocarcinoma. Of note, the TMB
and global methylation status were similar among these mole-
cular subtypes (Supplementary Fig. 13e, f), consistent with our
previous studies in invasive lung cancers37 and suggesting
potential impact of these driver mutations on immune micro-
environment independent of global genomic and methylation
status.

Discussion
The increasing implementation of CT-guided screening and
advent of high-resolution diagnostic CT scans has resulted in a
drastic increase in the detection of IPNs38,39, many of which are
lung ADC precursors. The management of IPNs is now guided by
a clearer clinical understanding of malignant progression. To
reduce overtreatment, many IPNs are now followed by imaging
surveillance without surgical intervention, unless demonstrating
aggressive features such as rapid growth. Early-stage lung cancers
can now be treated with minimally invasive surgical procedures
that are well-tolerated with high cure rate and low cost due to
brief hospital stays. On the other hand, ~20% of patients can
present with multifocal diseases40 that may represent metachro-
nous primary lung cancers or lung cancer precursors, which
complicate the surgery. For these patients, surgical resection of a
primary lung cancer could be complemented by adjuvant or
chemoprevention approaches. Current treatment strategies would
greatly benefit from a better understanding of the molecular
mechanisms underlying early lung carcinogenesis.

Our current knowledge of early lung adenomatous carcino-
genesis is rudimentary. Cancer evolution is shaped by the inter-
action between cancer cells and host immune surveillance, a
process termed immunoediting, consisting of elimination, equi-
librium, and escape phases41. It is well documented that the
majority of human cancers are infiltrated with various immune
cells, but often in an immunosuppressive microenvironment as
remnant evidence of immunoediting41. T cell immunity is sig-
nificantly compromised even in stage I lung cancers37,42 indi-
cating that these cancers have already begun evading immune
surveillance. However, when and how the elimination and equi-
librium phases occur over the lung cancer evolution continuum is
unknown. Investigating the molecular and immune landscape of
lung cancer precursors is warranted to elucidate the timing of
immune activation/evasion and its underlying molecular
mechanisms during early lung carcinogenesis.

In the current study, we leveraged a relatively large cohort of
resected lung ADC precursors with available genomic and epi-
genetic profiling data to characterize the immune contexture
across normal lung, AAH, AIS, MIA, and ADC by immune gene
expression profiling, mIF, and TCR sequencing. Overall, there
was a more suppressive and intensively regulated immune
response, particularly T cell response, in later-stage lesions
highlighting that the dynamic interaction between cancer cells
and host immune surveillance has evolved toward immune escape
along the pathogenesis of lung ADC. Notably, immune con-
texture progressed as a continuum from preneoplasia AAH to
preinvasive AIS, to minimally invasive MIA and finally frankly
invasive ADC. This is consistent with overall progressive genomic
evolution from AAH to AIS, MIA, and ADC7 suggesting that
early carcinogenesis of lung ADC is a gradual process shaped by
host immune surveillance. This is in line with a similar study on
the precursors of lung squamous cell carcinoma (SCC) by

Mascaux and colleagues, which revealed the evidence of immune
evasion along with the evolution of preinvasive SCC lesions43.
Taken together, these data advocate for therapy targeting the
immune microenvironment in patients with lung cancer pre-
cursors to prevent the development of invasive lung cancers. In
light of these findings, therapeutic strategies reprogramming the
tumor immune/inflammation microenvironment in patients with
lung ADC precursors prior to intensive immunosuppression in
invasive lung cancers may be beneficial. Interventions modifying
the lung immune/inflammation microenvironment have long
been proposed for lung cancer prevention44 and have shown
promise in both preclinical models45 and patient cohorts46.
Prospective lung cancer immunoprevention clinical trials such as
randomized phase II of immunotherapy with Pembrolizumab for
the prevention of lung cancer (IMPRINT-Lung; NCT03634241)
testing immune checkpoint inhibitors (ICIs) in individuals with
high-risk IPNs are currently underway to validate this hypothesis.

Identifying the molecular features associated with immune
activation and evasion may facilitate establishing biomarkers for
selection of patients who might benefit from immunoprevention.
For example, KRAS mutations were correlated with more active
immune response, while EGFR mutations were correlated with a
cold immune microenvironment in this cohort of IPNs. It has
been well established that EGFR mutations were associated with
inferior response to immunotherapy in patients with advanced
NSCLCs47. However, it is still unclear whether the impact of
oncogenic mutations on the immune microenvironment and the
response to immunotherapy is different in full-fledged cancers
versus lung cancer precursors. Data from the IMPRINT-Lung
trial, in which ICI is being tested in patients with high-risk IPNs
regardless oncogenic driver status may shed light on this critical
question and provide novel insights to guide future immuno-
prevention trials.

Overall, oncogene mutations, CNV burden, AI burden, and
methylation status were all found to associate with the immune
contexture in this cohort of IPNs, similar to advanced cancers48,49.
However, the association with any single genomic or epigenetic
feature was weak, suggesting heterogeneous but convergent evo-
lution towards immune escape during early lung carcinogenesis.
Our previous work suggested that early lung ADC carcinogenesis
may predominantly follow the clonal sweep model, whereby cer-
tain subclones in early-stage preneoplasia turn into dominant
clones in later-stage diseases while unfit subclones are eliminated7,
primarily by the host immune system. In the early phases of
carcinogenesis, stochastic genomic and epigenetic alterations lead
to heterogeneous subclones with various combinations of mole-
cular features that define the distinct biology of each subclone,
including survival ability under selective immune pressure.
Notably, the impact of genomic and epigenetic alterations on
immune response are intertwined. For example, methylation may
directly affect immune response by regulating the expression of
immune genes50 and potential neoantigens51 or indirectly by
increasing DNA vulnerability for development of CNV and
somatic mutations that can subsequently influence the immune
microenvironment. Global hypomethylation is known to associate
with CIN52 and increased rate of somatic mutations53 and indeed,
global methylation level was negatively associated with TMB and
CNV burden in this cohort of lesions8. Since high CNV burden is
associated with a cold immune microenvironment29 while high
TMB can increase tumor immunogenicity and facilitate immune
recognition and elimination of cancer cells54, the impact of global
hypomethylation (associated with both high CNV burden and
high TMB) on anti-tumor immunity is complicated. Eventually,
the outgrowth of subclones is determined by the accumulated
effects of all molecular aberrations. Only the cells with the com-
bination of molecular features enabling their rapid proliferation
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and escape from immune attack will survive and outgrow into the
dominant clones in invasive cancers. For example, though
advanced IPNs tend to harbor a high TMB that could lead to
active anti-tumor immune response, they also exhibited higher
CNV burden, higher incident of HLA LOH and decreased global
methylation, all of which are associated with a cold tumor
immune microenvironment, resulting in an overall cold immune
microenvironment in advanced IPNs.

To the best of our knowledge, this is the first systemic study on
immune landscape and associated molecular features in IPNs of
different histologic stages during early lung adenomatous carci-
nogenesis. However, this study has several technical and scientific
limitations. From a technical aspect, our immune profiling lacked
high-resolution T cell subtyping because of limited numbers of
markers assessed by mIF and immune genes profiled. Addition-
ally, the scarcity of resected IPNs and small sizes of these IPNs
hindered more comprehensive molecular profiling. Although
methylation data suggested that promoter hypermethylation
could lead to neoantigen depletion and immune escape, these
findings remain speculative in absence of transcriptomic analysis
of predicted neoantigens. Moreover, due to technical challenges
with antibodies, we were unable to directly assess CD4 expression
by mIF. Numerous studies have demonstrated that double-
negative (CD3+CD4−CD8−) and double-positive (CD3+CD4+
CD8+) T cells only constitute very small portions of T
lymphocytes55–59 suggesting using CD3+CD8− to infer CD3+
CD4+ cells could likely represent these cells accurately, though it
still remains suboptimal. With the emergence of advanced tech-
nologies which combine larger numbers of markers (i.e. imaging
mass cytometry20) the interaction of T cell subtypes could be
assessed at a more granular level in these scarce specimens.

Beyond the challenges outlined above, unveiling stepwise
molecular evolution associated with the progression from pre-
neoplasia to invasive ADC is scientifically difficult due to the
uncertain clinical course and biological complexity of these
lesions. First, in the current study and the majority of previous
studies regarding this subject, all molecular and immune data
were derived from resected IPNs, which offered a single mole-
cular snapshot of the evolutionary process of lung ADCs.
Although a linear model from AAH to AIS, MIA and invasive
ADC has been proposed for lung adenomatous carcinogenesis,
whether all AAH/AIS/MIA eventually progress to invasive lung
ADC and whether all invasive ADC follows this linear evolu-
tionary trajectory is unknown. Second, intratumor heterogeneity
of preneoplastic/cancer cells and immune cells present not only in
full-fledged lung cancers26,60–62, but also in their precursors7,63,
further increases the difficulty in identifying the molecular events
that drive neoplastic evolution. Third, all patients in this study
were from Japan and China; whether these findings are broadly
applicable in Western populations remains unknown. In the face
of such complexities, international collaborative studies on larger
cohorts of IPNs with long-term follow up and longitudinal
biopsies are needed to dissect the evolutionary trajectory of early
lung adenomatous carcinogenesis and its underlying molecular
mechanisms. Finally, these intriguing findings are based on
association rather than direct causation. Therefore, functional
studies using model systems including human relevant animal
models are warranted to understand the actual molecular
mechanisms underlying early lung adenomatous carcinogenesis.

Methods
Patients and tissue processing. Specimens were collected from 53 patients pre-
senting with pulmonary nodules, who underwent surgical resection at Nagasaki
Hospital (Japan) or Zhejiang Cancer Hospital (China) from 2014 to 2017 as
described previously7. Written informed consent was obtained from all patients.
The study was approved by the Institutional Review Boards (IRB) at MD Anderson

Cancer Center, Nagasaki University Graduate School of Biomedical Sciences, and
Zhejiang Cancer Hospital. Hematoxylin and eosin (H&E) slides of each case were
reviewed independently by two lung cancer pathologists to confirm the diagnosis.

DNA and RNA extraction. After pathologic assessment, macro-dissection was
performed to obtain premalignant cells or tumor cells for DNA and RNA
extraction. DNA and RNA samples were isolated using the AllPrep® DNA/RNA
FFPE Kit (Qiagen, Hilden, Germany). DNA samples were quantified by NanoDrop
1000 Spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and RNA
samples were quantified using RNA High sensitivity kit on the Qubit 3.0 fluo-
rometer (Thermo Fisher Scientific, USA). RNA quality was evaluated with RNA
integrity number (RIN)64 using RNA ScreenTape assay in Agilent 4200 TapeSta-
tion system (Agilent Technologies, USA).

Gene expression profiling of immune-related genes. The nCounter® PanCancer
Immune Profiling Panel (NanoString Technologies, Inc., Seattle, WA, USA), which
contains 770 genes (including 730 immune-related genes and 40 housekeeping
genes), was applied for gene expression profiling as previously described65,66 and
nSolver 4.0 software (NanoString Technologies) was applied for quality control
with default setting, and all samples passed QC check. Background correction was
performed with negative controls, followed by two-steps normalization using
geometric mean of 6 positive controls and 40 housekeeping genes. Then global
adjustment was achieved by quantile-normalization to remove any unwanted
technical variations, which was followed by log2 transformation to obtain variance
stabilization. Adequate processing was assessed by MA plots of tumor-normal
pairs. One-way ANOVA test was applied to identify differentially expressed genes
(DEGs) in different stages. We modeled the p-values using a beta-uniform mixture
(BUM) model, combined with false discovery rate (FDR < 0.1%) to determine a
cutoff for p-values67. Ingenuity Pathway Analysis (IPA) software (Quiagen, Hilden,
Germany)68 was applied to identify pathways enriched by these DEGs, with Core
Analysis based on human species and lung tissue. IPA identifies the top canonical
pathways enriched by these DEGs with a right-tailed Fisher’s exact test and cal-
culates a z-score to predict activation status of each pathway by comparing input
genes and the scored activation pattern. TIMER was applied to infer the infiltration
of various immune cell subtypes by de-convolution of gene expression data69.

Multiplex immunofluorescence staining and multispectral analysis. The mul-
tiplex immunofluorescence (mIF) analysis was applied only for samples with good
quality based on H&E staining of the same specimen. The mIF staining was per-
formed on unstained slides of FFPE specimens using the Opal 7-Color fIHC Kit
(Akoya Biosciences, USA) as previously described70. Eight immune markers were
placed in two 6-antibody mIF panel as followed: panel 1 contained pancytokeratin
(AE1/AE3; epithelial marker; dilution 1:300; Dako, Carpinteria, CA), PD-L1 (clone
E1L3N, dilution 1:100; Cell Signaling Technology, Beverly, MA), PD1 (clone
EPR4877-2, dilution 1:250; Abcam, Cambridge, MA), CD3 (T lymphocyte marker;
dilution 1:100; Dako), CD8 (cytotoxic T cell marker; clone C8/144B, dilution 1:20;
Thermo Fisher Scientific, Waltham, MA), and CD68 (macrophage marker; clone
PG-M1, dilution 1:450; Dako); and panel 2 contained pancytokeratin, CD3, CD8,
CD45RO (memory T cell marker; clone UCHL1, ready to use; Leica Biosystems,
Buffalo Grove, IL), Granzyme B (cytotoxic lymphocyte marker; clone F1, ready to
use; Leica Biosystems), and FoxP3 (regulatory T cell marker; clone 206D, dilution
1:50; BioLegend, SanDiego, CA). Human tonsil FFPE tissues were included and
used as positive and negative (autofluorescence) control with the primary anti-
bodies plus fluorophores and with primary antibodies without fluorophores,
respectively. The stained slides were scanned using Vectra 3.0 multispectral
microscope system (Akoya Biosciences, USA) under fluorescent illumination as
previously described71, first in low magnification (×10), then the representative
regions of interest (ROIs) were selected with Phenochart1.0.9 viewer (Akoya
Biosciences, USA) and finally scanned in high magnification (×20). The ROIs
(669 × 500 μm each) for mIF analysis were then selected after comparing with H&E
slides to capture malignant and premalignant cell cluster and various elements of
heterogeneity. The corresponding normal ROIs were selected in the farthest field of
tumor periphery with morphological normal tissue on the same slide. Each ROI
with panel 1 and panel 2 was overlapped with sequential sections. The target areas
were analyzed by in Form 2.4.4 software (Akoya Biosciences, USA). Next, the ROI
was divided into two compartments: epithelial compartment (alveolar wall or
malignant cell nests) and alveolar air space or tumor stroma compartment. The
individual cells were recognized by DAPI nuclei staining and co-localization
markers, their represented immune subtypes in panel 1 and panel 2 were sum-
marized in Supplementary Data 3. Percent data are calculated by dividing the total
nucleated cells on each panel for each sample, and are used for further analysis.

Profiling of TCRβ repertories. Immunosequencing of the CDR3 regions of
human TCRβ chains was performed using ImmunoSeq (hsTCRβ Kit, Adaptive
Biotechnologies) and T cell clonality and diversity were calculated as described
previously26,37. Briefly, T cell clonality represents a metric of T cell proliferation
and reactivity, and it is defined as 1-Pielou’s evenness and calculated based on

productive rearrangements by 1þ ∑N
i Pilog2ðPiÞ
log 2ðNÞ , Where pi is the proportional
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abundance of rearrangement i, and N is the total number of rearrangements.
Clonality ranges from 0 to 1, values approaching 0 indicate completely evenly
distributed frequency of different clones (subclonal), whereas values approaching 1
indicate distinct asymmetric distribution in which only a few activated clones
present at high frequencies (monoclonal). We applied Inverse Simpson index to
derive T cell diversity, the sum over all observed rearrangements of the square
fractional abundances of each rearrangements using productive templates 1

∑S
i¼1Pi

2,

where pi is the proportional abundance of rearrangement i, and S is the total
number of rearrangements. Inverse Simpson ranges from 1 to infinite, where a
sample with little variation or abundance has a value approaching 1, and a sample
with maximally diversity and evenly distribution has a value approaching infinite.
T cell density, an estimate of T cell infiltration in the tumor, was calculated by
normalizing TCR-β template counts to the total amount of DNA usable for TCR
sequencing, where the amount of usable DNA was determined by PCR-
amplification and sequencing of housekeeping genes expected to be present in all
nucleated cells.

Detection of allele-specific HLA loss. Loss of heterogeneity of human leukocyte
antigen (HLA) was assessed as previously descried31. Briefly, class I HLA alleles for
each HLA gene was inferred by POLYSOLVER using a two-step Bayesian classi-
fication approach, which takes into account the base qualities of aligned reads,
observed insert sizes, as well as the ethnicity-dependent prior probabilities of each
allele. Tumor purity and ploidy were estimated using ASCAT. Then Loss Of
Heterozygosity in Human Leukocyte Antigen (LOHHLA) algorithm was applied to
detect allele-specific HLA loss in each sample. Briefly, logR and BAF across each
HLA gene loci was obtained by binning the coverage at mismatch positions
between homologous HLA alleles, and HLA haplotype specific copy numbers were
then calculated based on logR and BAF values from the corresponding bin adjusted
by tumor purity and ploidy. The median value of binned allelic copy number was
used to determine LOH, where a copy number of <0.5 indicated allele loss and
LOH was determined if p < 0.01.

Prediction of neoantigens. All the peptides with 9–12 amino acids that spanning
missense or stop gain mutations were extracted as mutant peptides, to identify
candidate peptides binding to MHC Class I or II molecules. The affinity of 9–12
peptides binding to MHC Class I molecules were predicted using the NetMHC-
Pan3.0 binding algorithm72. The affinity of 9–12 mer peptides binding to MHC
Class II molecules were predicted using the NetMHCIIPan3.1 binding algorithm73.
The threshold for binding peptides is defined as half-maximum inhibitory con-
centration affinity value (IC50) < 500 nM or a rank percentage score< 2%. HLA-A,
HLA-B, HLA-C are included in MHC class I molecules, and HLA-DR, HLA-DP
and HLA-DQ are included in MHC Class II molecules.

Integration of genomic and methylation profiling data. Somatic mutations,
allelic imbalance (AI), copy number variations (CNV), oncogene mutations, and
global methylation analysis in the same cohort were performed in previous
studies7,8.

Statistical analysis. Different statistical models were applied to assess the asso-
ciation among immune data, genomic data, and methylation data. For association
between two continuous variables, spearman’s rank correlation test was used. For
association between one continuous variable and one categorical variable, Wil-
coxon rank-sum test (categorical variable with two levels) and Kruskal–Wallis H
test (categorical variable with more than two levels) were applied. The FDR method
was used for multiple testing adjustment of p-values74. All p-values are calculated
with two-sided test, and p < 0.05 was considered to be statistically significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data for WES has been deposited at European Genome-phenome Archive (EGA),
under the accession code: EGAS00001004960 and the data for RRBS is under
EGAS00001004610. Both WES and RRBS datasets are available under restricted access,
which can be obtained by contacting Jianjun Zhang (JZhang20@mdanderson.org). The
gene expression data of Nanostring nCounter is deposited to GEO under https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE169033. TCRseq dataset is available in
immuneACCESS under https://clients.adaptivebiotech.com/pub/dejima-2021-nc.
GSE102511 was retrieved from GEO. Source data is provided as a source data file. All
other data may be found within the main manuscript and supplementary information or
available from the authors upon request.
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