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Evolution of DNA methylome from precancerous
lesions to invasive lung adenocarcinomas
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The evolution of DNA methylome and methylation intra-tumor heterogeneity (ITH) during

early carcinogenesis of lung adenocarcinoma has not been systematically studied. We per-

form reduced representation bisulfite sequencing of invasive lung adenocarcinoma and its

precursors, atypical adenomatous hyperplasia, adenocarcinoma in situ and minimally invasive

adenocarcinoma. We observe gradual increase of methylation aberrations and significantly

higher level of methylation ITH in later-stage lesions. The phylogenetic patterns inferred from

methylation aberrations resemble those based on somatic mutations suggesting parallel

methylation and genetic evolution. De-convolution reveal higher ratio of T regulatory cells

(Tregs) versus CD8+ T cells in later-stage diseases, implying progressive immunosup-

pression with neoplastic progression. Furthermore, increased global hypomethylation is

associated with higher mutation burden, copy number variation burden and AI burden as well

as higher Treg/CD8 ratio, highlighting the potential impact of methylation on chromosomal

instability, mutagenesis and tumor immune microenvironment during early carcinogenesis of

lung adenocarcinomas.
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Lung cancer remains the leading cause of cancer-related death
worldwide, yet it is curable if treated early. Many cancers,
including lung cancers, are preceded by precancers. Treating

precancers to prevent invasive lung cancer is theoretically an
attractive approach to reduce lung cancer-associated morbidity
and mortality. However, developing strategies for lung cancer
prevention has been challenging owing to our limited under-
standing of neoplastic progression from precancers to invasive
lung cancers1. Lung adenocarcinoma (ADC) is the most common
histologic subtype, accounting for >50% of all lung cancers2. It
has been proposed that invasive lung ADC evolves from atypical
adenomatous hyperplasia (AAH), the only recognized precancer
for lung ADC, which could progress to ADC in situ (AIS), a
preinvasive lung cancer, then to minimally invasive ADC (MIA),
and eventually frankly invasive ADC3. AAH, AIS, MIA, and some
ADC often present as pulmonary nodules with a unique radi-
ologic feature termed ground-glass opacity (hazy nodular opacity
with the preservation of underlying bronchial and vascular
margins) on computed tomography scans. The biology and
clinical course of these lesions are not well defined and their
management is controversial. Surgical resection is not the stan-
dard of care for treating these lung nodules and the diagnostic
yield of biopsy is often low, particularly for ground-glass opacity-
dominant nodules4. Therefore, these lung nodules are often
referred to as indeterminate pulmonary nodules (IPNs). How-
ever, as surgical resection is not often offered, obtaining adequate
tissue for comprehensive profiling of these IPNs is difficult,
hindering our understanding of the biology underlying these
lesions.

We initiated an international collaboration for the collection
and characterization of these lung precancers, preinvasive, and
early invasive ADC presenting as IPNs. We recently reported the
genomic landscape, including the genomic intra-tumor hetero-
geneity (ITH), and revealed evidence of progressive evolution
from AAH to AIS, MIA, and ADC5. In addition to mutations,
epigenetic alterations such as DNA methylation can also impact
neoplastic transformation and fitness. Recent genome-wide
methylation profiling studies have revealed that certain altera-
tions, such as the silencing of tumor suppressor genes (TSGs) and
the activation of genes in stem-like cellular programs6,7, may
contribute to carcinogenesis. Our previous study has demon-
strated that complex methylation of ITH was associated with
larger tumor size and increased risk of postsurgical recurrence in
patients with invasive lung ADC8. Methylation aberrations have
been reported in AAH lesions and tumor-adjacent lung tissues,
suggesting that methylation changes may be early molecular
events9,10. However, these pioneer studies only analyzed small
numbers of genes implicated in lung carcinogenesis. The dynamic
changes in methylation at the genome level and the evolutionary
trajectories of methylation ITH during the initiation and pro-
gression of lung precancers have not been studied systematically.

In this study, using a unique cohort of resected IPNs of dif-
ferent histologic stages, we delineate the evolution of the
methylation landscape and reveal increased methylation ITH in
lung ADC than its precursors of early stages, as well as global
hypomethylation correlates with immune infiltration, mutational
burden, and copy number alterations.

Results
DNA methylation aberrations increase with the progression of
precancers. We performed reduced representation bisulfite
sequencing (RRBS) of 62 resected IPNs (14 AAH, 15 AIS, 22
MIA, and 11 invasive ADC) and their paired normal lung tissues
from 39 patients (Supplementary Data 1). There was no significant
difference regarding age (p= 0.6288, Kruskal–Wallis H test),

sex (p= 0.6482, χ2 test), or smoking status (p= 0.5696, χ2 test)
between different histologic groups (Supplementary Data 2). To
minimize the impact of “contamination” from nonmalignant cells,
each IPN specimen was reviewed by two lung cancer pathologists to
confirm the diagnosis, mark the areas of diseases, and estimate the
purity. Only specimens with a minimum of 40% of premalignant or
malignant cells were included and manual macrodissection was
applied to obtain premalignant or malignant cells for DNA
extraction. Furthermore, we estimated the tumor purity of these
specimens in silico based on whole-exome sequencing (WES) data
by ABSOLUTE11. With the caveat that these IPNs had a high level
of genomic ITH leading to underestimation of tumor purity5, we
observed no significant difference in tumor purity between different
stages (Supplementary Fig. 1).

The mean RRBS sequencing coverage was 58.98 reads. With a
minimum of ten reads shared across all samples, the RRBS
profiling allowed the quantification of methylation status at
751,462 CpG sites mapped to 15,761 known genes. The principal
component analysis demonstrated that the DNA methylome of
AAH was more similar to that of normal lung tissue, whereas
those of AIS, MIA, and ADC were clearly different from that of
the normal lung (Fig. 1a). Similarly, unsupervised hierarchical
clustering identified two separate clusters: one comprising normal
lung and AAH, and the other including AIS, MIA, and ADC
(Supplementary Fig. 2). In addition, different spatially separated
specimens from the same IPNs tended to cluster together,
suggesting that interlesion heterogeneity was more prevalent
than intralesion heterogeneity. Similarly, the methylation profiles
of different spatially separated specimens from the same
IPNs were highly correlated (median coefficient r= 0.884 [range,
0.736–0.969], p < 2.2 × 10−16; Supplementary Fig. 3).

There was a progressive increase in the number of CpG sites
displaying hypermethylation or hypomethylation (as compared
with matched normal lung tissues from the same patients) from
AAH to AIS, MIA, and invasive ADC. Hypermethylation
appeared to emerge as early as AAH, whereas hypomethylation
was evident in only AIS, MIA, and ADC. Meanwhile, the
correlation coefficients between the methylation profiles of IPNs
and those of their paired normal tissues progressively decreased
(r= 0.885 for AAH–normal, 0.824 for AIS–normal, 0.796 for
MIA–normal, and 0.740 for ADC–normal, p < 2.2 × 10−16, for all
comparisons; Fig. 1b). These decreases were marginal, reflecting
the substantial heterogeneity among different patients and
suggesting that overall methylation changes may be subtle during
early lung carcinogenesis. Nonetheless, these marginal decreases
represent methylation alterations in thousands of CpG sites. Further
quantification of differentially methylated regions (DMRs) in these
IPNs compared with their paired normal lung tissues revealed that
later-stage IPNs had numerically more CpG sites with hypermethy-
lation (p= 0.3635, Kruskal–Wallis H test) and significantly more
CpG sites with hypomethylation (p= 0.000287, Kruskal–Wallis
H test) (Fig. 1c).

Evolution of methylome shows similar trend across all genomic
regulatory regions. The epigenome is composed of regions with
various regulatory elements. To further depict the methylation
evolution at different genomic regulatory regions, we first parti-
tioned genomic regions into promoters, enhancers, transcribed
regions (transcription), and repressed regions (heterochromatin)
based on the peaks of histone marks (H3K04me1, H3K04me2,
H3K04me3, H3K09ac, H3K09me3, H3K27ac, H3K27me3,
H3K36me3, and H3K79me2) using ChromHMM12. We then
calculated the numbers of DMRs that overlap with these regions.
As shown in Fig. 2a–d, the number of DMRs was higher in later-
stage IPNs in all genomic regulatory regions. Next, we selected
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DMRs overlapping with repetitive elements (UCSC RepeatMas-
ker). Later-stage IPNs demonstrated increased DMRs in repetitive
regions as well as nonrepetitive regions (Fig. 2e, f). Furthermore,
as partially methylated domains (PMDs) have been reported to
represent a major source of DNA methylation variation in a
variety of cancer types13, we quantified DMRs inside PMDs versus
DMRs outside PMDs. Similar to the distribution of DMRs in
genomic regulatory regions, there were significantly more DMRs
in later-stage IPNs both inside and outside PMDs (Fig. 2g, h).

Taken together, these results suggested that the majority of
methylation alterations during early carcinogenesis of lung ADC
may be stochastic across all genomic regulatory regions.

Enrichment of transcription factor (TF) binding sites at DMRs.
DNA methylation can impact the DNA binding of TFs to their
target sequence, termed “motifs”14. We searched the motifs that
were covered by DMRs in the IPNs and identified 50 motifs in

Fig. 1 DNA methylation aberrations increase with the progression of precancers. a Principal component analysis of the methylation profiles of the
average methylation values in 39,148 5-kb tiling regions (shared in all samples) composed of autosomal, non-polymorphism CpG sites supported by at
least 10× read coverage in IPNs of different stages. The solid dots of different colors represent IPNs of different stages and the star (*) represented the
centers of specimens of each histologic stage. b Overall genome-wide DNA methylation correlation between IPNs of different stages and matched normal
tissue from the same patients. The yellow-purple clouded dots in the smooth scatter plot represent the CpG sites covered by IPN specimens (n= 14 for
AAH, n= 11 for AIS, n= 18 for MIA, n= 10 for ADC) and paired normal lung. Two-tailed Pearson’s correlation coefficient r values are shown on the top.
P < 2.2 × 10−16 in all four histologic stages. The red dots represent CpG sites with hypermethylation in IPNs (within DMRs of methylation gain in IPNs
and methylation ≤20% of CpG sites in the corresponding normal lung) and the green dots represent CpG sites with hypomethylation (within DMRs
of methylation loss in IPNs and methylation ≥20% of CpG sites in the corresponding normal lung). c The number of CpG sites overlapping with
DMRs showing hypermethylation (left) or hypomethylation (right) in IPNs of different histologic stages. The green dots represent the mean of
normalized numbers of CpG sites overlapping with DMRs in each IPN. The solid blue dots represent the mean numbers of CpG sites overlapping
with DMRs in IPNs of each histologic stage with a 95% confidence interval as error bars. The differences among all stages were assessed using the
Kruskal–Wallis H test. Source data is provided as a source data file.
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Fig. 2 The number of DMRs in IPNs of different stages by genomic regulatory regions and PMDs. The number of DMRs are shown in promoters (a),
enhancers (b), transcribed regions (c), repressed regions (heterochromatin) (d), repetitive regions (e), non-repetitive regions (f), inside PMDs (g),
and outside PMDs (h). The solid blue dots represent the means of normalized numbers of DMRs in IPNs of each histologic stage with a 95%
confidence interval as error bars. The differences among all stages were assessed using the Kruskal-Wallis H test. Source data is provided as a source
data file.
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AAH, 57 in AIS, 64 in MIA, and 66 in ADC that were
significantly enriched over all DMRs in each histologic stage
(Supplementary Data 3). Many of these motifs were aligned with
known binding sites recognized by different TFs known to be
involved in critical biological processes, including cell cycle pro-
gression, cell proliferation, apoptosis, tumor metastasis, angio-
genesis, and immune response15–18 (Supplementary Data 4).
Motifs associated with BHE40, BMAL1, CLOCK, EPAS1, MAX,
MITF, MXI1, MYC, MYCN, TFE3, USF1, and USF2 were sig-
nificantly enriched at DMRs across all stages, suggesting that the
methylation changes at these CpG sites may be early events before
the establishment of precancers. On the other hand, some motifs
were significantly enriched in DMRs in later-stage IPNs, includ-
ing ATF3, E2F1, E2F3, E2F4, E2F6, E2F7, EGR1, EGR2, KLF1,
KLF12, KLF3, KLF4, KLF6, MYOG, PATZ1, SP1, SP2, SP3, SP4,
TFDP1, ZBT14, ZIC1, ZN281, ZN335 exclusively in ADC; ASCL1,
HEN1, KLF9, SNAI2 only in ADC and MIA; SNAI1 and TFEB in
ADC, MIA, and AIS but not in AAH, suggesting that methylation
changes at these CpG sites may be associated with later processes
during carcinogenesis of these IPNs.

Later-stage disease has higher methylation ITH. Molecular ITH
can have a profound impact on tumor biology19,20, and our
previous work demonstrated that methylation ITH was associated
with clinical outcome in patients with invasive ADC8. To assess
the evolution of methylation ITH during the progression of lung
precancers, we first calculated the “epiallele shifts,” the combi-
natory difference in epiallele status in all captured loci
(>60 reads), for each IPN specimen compared to paired normal
lung tissues from the same patients. MIA and invasive ADC
showed more pronounced epiallele shifts than AAH or AIS did,
indicating a higher level of methylation ITH in IPNs of later
histologic stages (Fig. 3a). The corresponding abundance of eloci
(loci with distinct epiallele shifts) was also higher in later-stage
IPNs (p= 0.004567, Kruskal–Wallis H test) (Fig. 3b). When
focusing on the 15 patients with multiple IPNs of different stages
(IPNs of different stages with the identical genetic background
and exposure history), the abundance of eloci was higher in later-
stage IPNs than in early-stage IPNs in 13 of the 15 patients
(Supplementary Fig. 4), further suggesting that later-stage IPNs
have a higher level of methylation ITH. On the other hand, some

patients (C23 and J43 for example) had a relative high level of
methylation ITH in early-stage IPNs. Since the postoperative
follow-up was rather short and the majority of patients are doing
well without recurrence, the biological or clinical significance of a
higher level of methylation ITH in early-stage IPNs remains to
be determined. Furthermore, we calculated the frequency of
16 combinatory DNA methylation patterns at four consecutive
CpG sites covered by the same RRBS reads (termed “epipoly-
morphism”) in each specimen. Accordingly, later-stage IPNs
showed higher epiallele diversity than early-stage IPNs did
(Supplementary Fig. 5). Moreover, ADCs had higher levels of
epipolymorphism at eloci than MIA, AIS, or AAH did (Fig. 3c),
indicating that DNA methylation status had undergone a greater
extent of drifting in later-stage IPNs than in early-stage IPNs.

In addition, we sought to assess whether methylation ITH
differs at different genomic regulatory regions. As shown in
Fig. 4a, loci at heterochromatic regions show the most
pronounced epiallele shifts indicating a higher level of methyla-
tion ITH at genomic regions of repressed chromatin states.
Moreover, there were more eloci inside PMDs than outside PMDs
across all histologic stages (Fig. 4b–e). PMDs are known to be
more epigenetically plastic21, which makes CpG sites inside
PMDs more prone to develop methylation ITH. In addition,
PMDs have been reported to associate with repressive chromatin
domains, gene-poor regions, and low transcription21,22; therefore,
a higher level of methylation ITH may be better tolerated inside
PMDs.

We next examined the relative distance of eloci to the nearest
transcription start sites (TSSs). Interestingly, the vast majority of the
eloci were much closer to TSSs in invasive ADC than in AAH, AIS,
or MIA (Supplementary Fig. 6). To explore the potential association
between methylation ITH and histone modification, we performed
locus overlap analysis (LOLA)23 of genomic regions identified as
eloci to evaluate the overlap between genomic regions with
methylation ITH and genomic regions targeted by diverse histone
posttranslational modifications24,25. LOLA calculates the number of
overlapping versus nonoverlapping regions to assess the significance
of the overlap. After adjustment for false discovery rate considering
more eloci in later-stage IPNs, MIA and ADC had higher incidences
of eloci significantly enriched in genomic regions occupied by
H3K27me3, H3K9me3, and H3K9me2 (Supplementary Data 5),

Fig. 3 Increased DNA methylation ITH in later-stage IPNs. a Cumulative distribution curves of epiallele shifts of the DNA methylome in AAH, AIS, MIA,
and ADC specimens compared to normal lung, with 1st percentile of entropy as −21.46 for AAH, −28.88 for AIS, −30.75 for MIA, and −42.01 for ADC by
quantile regression. b The abundance of eloci (loci with distinct epiallele shifts) among IPNs of different histologic stages. Each green dot represents the
mean of normalized number of eloci in each IPN. The solid blue dots represent the mean numbers of eloci in the IPN of each histologic stage with 95%
confidence interval as error bars. The differences among all stages were assessed using the Kruskal–Wallis H test. c The cumulative distribution curves of
epipolymorphism for loci with significant epiallele shifts (ΔS <−60) in IPN specimens of AAH, AIS, MIA, and ADC, with 50th percentile of
epipolymorphism as 0.295 for AAH, 0.362 for AIS, 0.359 for MIA, and 0.463 for ADC by quantile regression. X-axis denotes the epipolymorphism in IPN
specimens at each loci. Y-axis denotes the cumulative fraction of epipolymorphism from all IPN specimens of each stage. Source data is provided as a
source data file.
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histone modifications strongly associated with transcriptional
repression26–28 than AAH or AIS, supporting the concept that
histone modifications cooperate with DNA methylation alterations
along the evolution of lung precancers29,30.

Genomic and methylation evolution was primarily in parallel
during early lung carcinogenesis. To dissect the evolutionary
relationship between epigenome and genome in lung ADC, we
constructed phylogenetic trees. To avoid overfitting, only five
patients (C5, J7, J8, J9, and J43) with IPNs having a minimum of
four spatially separated specimens were included. The overall
structure of methylation-based phylogenetic trees was similar
to that of phylogenetic trees based on mutations5 (Fig. 5a–e).
Furthermore, the genomic distance based on somatic mutations
was positively correlated with the methylation distance between
any pair of specimens from the same IPNs (Fig. 5f), suggesting
parallel evolution (either collaboratively or independently) in play
during early carcinogenesis of these lung ADCs. Particularly, four
out of five patients with multiregional specimens (C5, J7, J8, J9,
and J43) included for phylogenetic analysis demonstrated a
strong correlation between methylation distance and genomic
distance, with the only exception of patient J9 (Supplementary
Fig. 7). Of note, J9 was a never smoker with the lowest genomic
aberration burden (the lowest total mutation burden (TMB),
lowest allelic imbalance (AI) burden, and the second lowest copy
number variation (CNV) burden) and the highest level of geno-
mic ITH (the lowest proportion of trunk mutations) among these
five IPNs, but similar methylation aberration burden comparable
to the other four IPNs (Supplementary Data 6).

Interestingly, in patient C10, promoter hypermethylation of
TSC2, a candidate TSG known to inhibit cell growth in the lung31,

was identified in AIS specimens, whereas copy number loss was
identified in AAH specimens from the same patient. Similar
phenomena of different putative TSGs were observed in several
other patients (Supplementary Data 7). Taken together, these data
suggested convergent evolution, whereby the same genes or
pathways are activated or inactivated by different mechanisms in
different cancer cell clones during lung cancer development and
progression.

Global hypomethylation and methylation ITH were associated
with increased chromosomal instability (CIN) in precancerous
IPNs. As an essential chemical modification, the methylation
status can directly impact the chromosomal structure and DNA
mutagenesis. It has been well documented that global hypo-
methylation is associated with CIN and increased mutational
rates in cancers32,33. To further depict the interaction between
genome and epigenome during early carcinogenesis of lung ADC,
we assessed the global methylation status of these IPNs using long
interspersed transposable elements-1 (LINE-1), a widely used
surrogate marker for global DNA methylation34. As shown in
Fig. 6a, we observed a significant decrease of LINE-1 methylation
in AIS, MIA, and ADC compared to normal lung tissues or AAH
indicating increased global hypomethylation in IPNs of later
histologic stages. Importantly, the methylation level of LINE-1
was inversely correlated with CNV burden (Fig. 6b), AI burden
(Fig. 6c), and TMB (Fig. 6d), indicating that global hypomethy-
lation is associated with a higher level of CIN. Interestingly,
LINE-1 methylation status was also inversely correlated with the
proportion of clonal mutations in each specimen (Fig. 6e). Fur-
thermore, there was a significant positive correlation between the
abundance of eloci and CNV burden as well as AI burden

Fig. 4 Comparison of methylation ITH by epiallele shifts in different genomic regulatory regions and PMDs. a Cumulative distribution curves of epiallele
shifts (from IPN specimens versus its matched normal lung tissues) of consecutive loci located in promoters, enhancers, transcribed regions, and repressed
regions (heterochromatin) are shown, with 1st percentile of entropy as −34.07 for all genomic regions, −30.87 for promoters, −38.12 for enhancers,
−42.44 for transcribed regions, −45.48 for repressed regions, and −29.51 for repetitive regions by quantile regression. Cumulative distribution of epiallele
shifts (from IPN specimens versus its matched normal lung tissues) of consecutive loci located inside PMDs (red) versus outside PMDs (blue), with
1st percentile of entropy as −29.10 inside PMDs and −20.73 outside PMDs in AAH (b), −37.60 inside PMDs and −28.05 outside PMDs in AIS (c),
−44.74 inside PMDs and −29.25 outside PMDs in MIA (d), −50.82 inside PMDs and −41.25 outside PMDs in ADC (e) by quantile regression. The
boundary of PMDs is derived from WGBS profiling of normal lung. Source data is provided as a source data file.
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(Supplementary Fig. 8), indicating higher methylation ITH was
associated with increased CIN.

Given the complex interaction between genome and epigen-
ome, we next categorized CpG sites located in chromosomal
regions with various CNV status to assess whether CNV status
impacted aforementioned methylation analyses. As shown in
Supplementary Fig. 9, the evolutionary patterns of methylation
ITH (represented by the number of eloci) were similar regardless
of using CpG sites located in genomic regions with copy number
gain, loss, or neutral. We also plotted the cumulative distribution
of epiallele shifts of AAH, AIS, MIA, and ADC using only CpG
sites located in copy number-neutral chromosomal regions and
observed that later-stage IPNs had a higher cumulative distribu-
tion of epiallele shifts than early-stage IPNs (Supplementary
Fig. 10), similar to that using all CpG sites (Fig. 3a). Furthermore,
we regenerated methylation-based phylogenetic trees using only
CpG sites located in copy number-neutral chromosomal regions.
As shown in Supplementary Fig. 11, the patterns of these
methylation-based phylogenetic trees are almost identical to those
using all CpG sites. Taken together, these results suggested that in
these IPNs, most methylation changes were early molecular
events that have occurred before the copy number changes, and
once established, these patterns were inherited without significant
changes from one cell generation to the next.

Global hypomethylation was associated with suppressed T cell
infiltration. Cancer evolution is shaped by the interaction
between cancer cells and host factors, particularly the host
immune response. Given T cells’ central role in antitumor
immune surveillance20,35, we depicted the T cell infiltration in
AIS, MIA, and invasive ADC by deconvoluting RNA-sequencing
(RNA-seq) data using ImmuCellAI from an independent cohort
recently published36. Our analysis demonstrated an increase of
CD4+ T regulatory cells (Tregs) (p= 4.25e− 27) and decrease of
CD8+ T cells (although the difference was not significant, p=
0.1374) from normal lung tissues to AIS/MIA and invasive ADC
leading to significantly higher Treg/CD8 ratio in invasive ADC
(p= 3.17e− 31) (Supplementary Fig. 12a–c). We next applied
MethylCIBERSORT37 to delineate the T cell infiltration of IPNs
in current cohort. Similarly, we observed higher infiltration of
Tregs (Fig. 7a, p= 0.009758) and lower infiltration of CD8+
T cells in later-stage IPNs, although the difference did not reach
statistical significance (Fig. 7b, p= 0.1472), leading to sig-
nificantly higher Treg/CD8 ratio in later-stage IPNs (Fig. 7c, p=
0.00194). As increased Treg/CD8 ratio is known to associate with
suppressed antitumor immune surveillance38, these results indi-
cated a more suppressive immune microenvironment in later-
stage IPNs, consistent with our previous findings39. Interestingly,
Treg/CD8 ratio was inversely correlated with LINE-1 methylation

Fig. 5 The evolutionary relationship between genomic and methylation landscape. Phylogenetic trees based on mutations (blue) and methylation values
(green) in patient C5 (a), J7 (b), J8 (c), J9 (d), and J43 (e). The length of each branch indicates the similarity of mutation or methylation profiles between
any pair of two spatially separated specimens from each patient. To avoid overfitting, only patients with IPNs having a minimum of four spatially separated
specimens were included for this analysis. f Correlation of genetic distance (Hamming distance based on all mutations) and methylation distance
(Euclidean distance based on methylation values of all CpG sites) between different spatially separated specimens from the same IPNs assessed by two-
tailed Spearman’s correlation analysis (p= 2.62 × 10−38). Each dot represents the normalized distance between each pair of specimens from the same
IPNs. Source data is provided as a source data file.
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level (Fig. 7d), implying potential association between global
hypomethylation and immunosuppression.

Discussion
The methylation landscape has been studied extensively in various
malignancies40–42. However, methylation aberrations in pre-
cancers are poorly defined, largely due to the lack of appropriate
specimens. Using small panels of genes implicated in lung carci-
nogenesis, previous studies have demonstrated gradual changes in
DNA methylation in AAH, AIS, and ADC9,10. However, due to a
small number of loci, primitive technology and the lack of geno-
mic data, many critical questions regarding methylation evolution
during early carcinogenesis were not addressed. Leveraging a
unique collection of resected IPNs of different stages, we deli-
neated the DNA methylome in lung precancers, preinvasive ADC,
and invasive ADC. Our results demonstrated a trend of increase in
both hypermethylation and hypomethylation in later-stage dis-
eases. Interestingly, compared to normal lung tissues, hyper-
methylation appeared to emerge as early as at AAH, whereas
hypomethylation only became obvious after AIS (Fig. 1b),
implying that somatic hypermethylation may have preceded
hypomethylation during early carcinogenesis of lung ADC.

Different cells within the same tumor can exhibit different
molecular and phenotypic features, a phenomenon termed ITH.
ITH may foster tumor evolution by providing diverse cell
populations, and the dynamics of ITH architecture may evolve
with neoplastic progression8,43. Methylation ITH has been
observed in various advanced malignancies and higher levels of

methylation ITH have been reported to associate with inferior
clinical outcomes8,44–46. However, there are only a few reports on
methylation ITH in precancers. For example, methylation ITH in
the Barrett esophagus, a precursor to esophageal ADC, was
associated with the risk of malignant transformation46. In the
current study, we demonstrated a higher level of methylation ITH
in later-stage IPNs than in early stages (Fig. 3 and Supplementary
Figs. 4 and 5). These results are in line with the findings in
advanced malignancies, suggesting that complex methylation ITH
may be associated with more aggressive tumor entities. As
methylation ITH is linked to evolutionary plasticity and pheno-
typic diversity44,47,48, a higher level of ITH could provide a higher
probability to survive and progress. Interestingly, eloci were sig-
nificantly more abundant around TSSs in ADC than in AAH,
AIS, or MIA. One plausible explanation is that although somatic
methylation ITH may be stochastic during early lung carcino-
genesis, some of the methylation aberrations (particularly those
that are close to TSSs and potentially impact gene expression)
may convey survival and/or growth advantages, resulting in the
selection of cells with higher densities of eloci around TSSs.

Parallel evolution of genome and methylome has been reported
in various advanced malignancies, including lung cancers8,49. The
current study demonstrated similar phylogenetic patterns and
correlated genetic and methylation distances in IPNs of different
stages (Fig. 5), suggesting that genetic alterations and DNA
methylation changes also evolve in parallel during early carci-
nogenesis of most lung ADCs. Meanwhile, promoter hyper-
methylation and copy number loss or mutations of putative TSGs

Fig. 6 Correlation of LINE-1 methylation with genomic features in IPNs of different stages. a LINE-1 methylation level in IPNs of different stages.
Each green dot represents LINE-1 methylation level in each IPN and the solid blue dots represent the means of LINE-1 methylation level in IPNs of each
histologic stage with 95% confidence intervals as error bars. The differences among all stages were assessed using the Kruskal–Wallis H test. Correlation
between LINE-1 methylation levels and percent of genes with copy number changes (b), number of events with allelic imbalance (AI) (c), mutation burden
(log 2 transformed) (d), and proportion of clonal mutations (e), assessed by two-tailed Spearman’s correlation analysis. Each dot represents each IPN
specimen. Source data is provided as a source data file.
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were identified in independent IPNs within the same patients.
These results were reminiscent of previous findings showing that
distinct mutations of the same cancer genes were present in
different spatial regions of the same tumors19,50,51 or in different
primary tumors from the same patients52, indicating convergent
evolution. Although genetic events (e.g., copy number loss of
TSGs) or methylation changes (e.g., promoter hypermethylation
of TSGs) may independently or cooperatively offer proliferation
or survival advantages to cancer cells, these processes may be
constrained around certain genes or pathways (e.g., inactivation
of TSC2 in the case of patient C10) that are essential to carci-
nogenesis in certain patients.

In our cohort, global hypomethylation was found to associate
with significantly higher TMB and CNV burden, as well as AI
burden (Fig. 6b–d), consistent with previous reports that global
hypomethylation is associated with CIN32 and increased rate of
somatic mutations33. These data suggest that methylation aber-
rations have not only evolved in parallel with genomic aberra-
tions but may have also facilitated accumulating genomic
alterations that may have led to more drastic phenotypic changes
in IPNs of later stages. Interestingly, a higher level of global
hypomethylation was associated with a higher proportion of
clonal mutations (Fig. 6e). As the progression of lung precancers
into invasive lung ADC predominantly follows a clonal sweeping
model with a selective outgrowth of fit subclones5, one plausible
explanation for this association is that cells within the precancers
with a higher level of global hypomethylation may be prone to
accumulate genomic aberrations, which subsequently provide
growth advantages to these cell clones to develop into major
clones in invasive lung ADC.

Cancer evolution results from the accumulation of molecular
alterations and is constantly shaped by selection pressure such as
anti-tumor immune surveillance and therapeutic interventions.
These molecular aberrations such as point mutations may

accumulate gradually, a model termed microevolution, or in a
punctuated or catastrophic manner through processes such as
chromoplexy and chromothripsis, a model termed macroevolution,
both of which have been reported in advanced malignancies53,54.
Largely due to the lack of appropriate study materials, our
understanding of the molecular evolutionary pattern during early
carcinogenesis of lung ADC is rudimentary. Our previous study on
genomic profiling of lung ADC and its precursors has demon-
strated progressive accumulation of somatic mutations from AAH
to AIS, MIA and ADC in line with the microevolution model.
Meanwhile, there was a distinct increase in CNV burden from
AAH to AIS and an increase in AI burden from AIS to MIA. In the
current study, we observed a progressive increase of methylation
changes from AAH to AIS, MIA, and ADC. However, the overall
difference in methylation aberrations appeared to be subtle
between IPNs of different histologic stages (Fig. 1b) and methy-
lation evolution from AAH to ADC was similar across different
epigenetically defined genomic regulatory regions. These observa-
tions suggest that methylation aberrations may have primarily
contributed to the stepwise microevolution during early carcino-
genesis of these lung ADCs and most methylation changes were
stochastic “passengers,” as are the majority of somatic mutations55.
On the other hand, these seemingly stochastic genomic and
epigenetic alterations may give rise to heterogeneous subclones
in precancers with various biological features; therefore, increasing
the possibility of establishing fit subclones leading to malignant
transformation. These principles may also apply to later neoplastic
evolution, including invasion, metastasis, and development of
drug resistance, where large-scale genomic sequencing studies have
only depicted the underlying molecular mechanisms in a small
subset of patients56,57. Comprehensive molecular profiling incor-
porating genomic, epigenomics, and transcriptomic profiling are
warranted in future studies to depict these critical cancer evolu-
tionary processes.

Fig. 7 T cell infiltration in IPNs of different stages. The immune cell fraction of T regulatory cells (Tregs) (a), CD8+ T cells (b), and Treg/CD8 ratio (c) in
IPNs of different stages. Each green dot represents the mean immune cell fraction in each IPN and the blue dots represent the means of immune cell
fraction in IPNs of each histologic stage with 95% confidence intervals as error bars. The differences among all stages were assessed using the
Kruskal–Wallis H test. d Correlation between LINE-1 methylation and Treg/CD8 ratio was assessed by Spearman’s correlation analysis. Each dot
represents each specimen. Source data is provided as a source data file.
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Antitumor immune surveillance plays a central role during the
initiation and progression of precancers. We have previously
reported that the immune microenvironment was suppressed in
invasive lung cancers compared to preinvasive cancers or pre-
cancers58. In this study, we demonstrated a higher Treg/CD8
ratio in later-stage IPNs (Fig. 7c and Supplementary Fig. 12c),
implying a more suppressed T cell infiltrate in later-stage diseases,
in line with a concomitant study of immune profiling of the same
cohort of IPNs59. These findings are consistent with the concept
of immune editing, whereby the immunogenicity of cancer cells
evolves under the selective pressure from antitumor immune
response, resulting in the emergence of immune-resistant cancer
clones in later-stage diseases. Interestingly, global hypomethyla-
tion was associated with a higher Treg/CD8 ratio (Fig. 7d).
Methylation aberrations may affect antitumor immune surveil-
lance directly by regulating the expression of immune-related
genes60 and/or potential neoantigens or indirectly via modifying
chromosomal vulnerability for CNV and mutations, both of
which are well known to influence the tumor immune micro-
environment61,62. However, these impacts are complicated as
many processes can affect antitumor immune surveillance both
positively and negatively. For example, a high level of global
hypomethylation may lead to a high CNV burden known to
associate with a cold tumor immune microenvironment61;
meanwhile, global hypomethylation is also associated with
increased mutation rate, which may increase tumor immuno-
genicity62. In the end, the selection of cancer cell clones under
immune pressure is determined by the cumulative effects of these
molecular aberrations and only the cells with the best combina-
tion of molecular features including methylation status, mutation
and CNV burden will survive and develop into dominant clones
in invasive cancers.

There has been increasing enthusiasm toward moving inter-
ventions successfully applied to metastatic cancers to early-stage
cancers and even precancers, a concept called interception63.
Compared with invasive cancers, precancers and preinvasive
cancers may exhibit less complexity in aberrant molecular land-
scapes, as well as better preserved immune contextures, and thus
may be easier to eradicate. Accordingly, we have launched the
IMPRINT-Lung Clinical Trial (NCT03634241), in which patients
with high-risk IPNs (many of which may be AAH or AIS) are
treated with immune checkpoint inhibitors. In the current study,
we demonstrated that DNA methylation aberrations are less
complex in precancers and preinvasive lung cancers than in
invasive cancers. Therefore, therapeutic agents that can modulate
methylation by targeting aberrant methylations and potentially
reprogram the immune microenvironment may also have potential
in treating precancers and preinvasive cancers to prevent invasive
lung cancers.

We delineated the evolution of genome-wide DNA methyla-
tion during the early carcinogenesis of lung ADC using RRBS
profiling on invasive lung ADC precursors of different stages.
Rather than aggregated changes from populations of cancer cells
measured by methylation array, RRBS assesses DNA methylation
heterogeneity of single molecules derived from individual cancer
cells, which made it possible to delineate methylation ITH at the
allelic level. Furthermore, the WES data from the same IPNs has
provided a unique opportunity to depict the relationship between
methylation and genomic evolution. Due to the scarcity of IPN
materials, our study has inevitable limitations. First, the sample
size was relatively small for each histologic stage. Given the
substantial heterogeneity between IPNs even within the same
stages, our data was not powered to address some essential
questions relevant to methylation evolution, such as whether
certain methylation aberrations are significantly more common in
early-stage IPNs than later-stage lesions representing “dead-end”

IPNs. Second, most of these IPNs were very small after patho-
logical assessment, which prevented the acquisition of sufficient
data in more patients for in-depth analyses such as multiregion
profiling to dissect the interaction between parallel evolution and
CIN, transcriptomic profiling to determine the biological impact
of observed methylation changes. Although a substantial number
of DMRs were associated with TF binding sites, which could
potentially regulate the transcriptome of the IPNs, these remained
to be speculation without confirmation from transcriptomic data.
Third, follow-up time for all patients in this study was relatively
short, so we were unable to investigate the impact of these
methylation changes on recurrence or survival. Finally, the
resected specimens in this study could only provide a single
molecular snapshot of the evolutionary process of IPNs. Whether
all AAH will evolve into AIS, MIA, and ADC; whether all ADC
evolve from AAH; and whether the observed methylation changes
in IPNs of different stages represent the true evolutionary
dynamics or simply reflect the distinct methylation patterns of
IPNs with different malignant potentials is unknown. Decipher-
ing the temporal evolution during neoplastic progression will
require specimens obtained over the course of disease progres-
sion. Clinical trials collecting longitudinal biopsy specimens, such
as IMPRINT-Lung (NCT03634241), may provide such opportu-
nities going forward.

Methods
Sample acquisition. A total of 53 resected pulmonary nodules and paired normal
lung tissues from 39 patients treated at Nagasaki University Hospital or Zhejiang
Cancer Hospital between 2014 and 2017 were used in the study. None of the
patients received chemotherapy or radiotherapy before surgery. Twenty-nine lung
nodules from 15 patients had multiregional specimens for spatial heterogeneity
assessment (Supplementary Data 1). WES data were available for all specimens
(EGAS00001004960)5. Written informed consent was obtained from all patients.
The study was approved by the Institutional Review Boards of MD Anderson
Cancer Center, Nagasaki University Graduate School of Biomedical Sciences, and
Zhejiang Cancer Hospital.

DNA methylation profiling by RRBS and data processing. DNA was extracted
using the QIAamp DNA FFPE Tissue Kit (Qiagen), and 200 ng–1 μg of DNA was
subjected to RRBS for genome-wide DNA methylation profiling64. Briefly, Trim-
Galore v.0.4.3 was used to trim the Illumina adapter sequences (a minimum of 5 bp
in a read was required to overlap with the adapter sequence); then Bismark v.0.18.1
integrating bowtie2 v.2.2.3 was used to align the trimmed reads to the GRCh37
assembly of the human genome. FastQC v.0.11.7 was used for quality control. The
DNA methylation levels for individual CpGs were calculated using methyKit
(v.1.16.0)65. Methylated reads (containing Cs) and unmethylated reads (containing
Ts) at each cytosine site were counted, and the percentage of methylated reads
among total reads covering the corresponding cytosine was calculated to quantify
the DNA methylome for each sample at the single-base resolution. The CpG sites,
DMRs, and loci of known genes, as well as genomic features, including CpG
islands, were annotated using the R package “ChIPSeeker (v.1.26.0)”66 and the
toolkit “genomation” (v.1.22.0)67, which is based on the “TxDb.Hsapiens.UCSC.
hg19.knownGene” annotation database and the UCSC Genome Browser CpG
islands table. To avoid bias, we kept CpG sites mapped to the autosome and
removed CpG sites overlapping with the single-nucleotide polymorphism (SNP)
positions in dbSNP137. DNA methylation was analyzed at either a single-CpG
resolution or at genomic region bins, in which DNA methylation values were
averaged across 5-kb regions. Promoter methylation was calculated as the averaged
DNA methylation values based on GENCODE promoter regions (i.e., 1 kb
upstream to 500 bp downstream of the annotated TSSs).

Comparison of methylation profiles between different specimens. To assess
the DNA methylome profiles of distinct IPNs of different pathological stages and
examine the heterogeneity between IPN samples, we first aggregated the DNA
methylation levels of 5-kb tiling regions across the genome in each sample by
retaining only CpG sites with ≥10 sequencing reads. We then applied principal
component analysis to identify global DNA methylation patterns between samples.
To evaluate consistent clusters of these DNA methylation profiles, we performed
an unsupervised hierarchical agglomerative analysis of CpG sites covered by
≥50 reads across all samples; these reads were based on single CpG methylation
calls without any binning. To evaluate the correlation between overall DNA
methylation in all samples from each patient, we used a pairwise approach to
compare distance and similarity matrices on the basis for all CpGs with coverage of
≥10 reads.
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Differential DNA methylation analysis. DMRs encompassing the differentially
methylated CpGs between paired disease and normal tissue samples were identified
using triangular kernel to smooth the number of methylated reads and the total
number of reads by applying the “noise filter” function in the “DMR caller”
(v.1.22.0) R package68. The differentially methylated CpG of paired samples were
identified by selecting CpG sites located in DMRs; only CpG sites covered by
≥10 reads in paired samples were included.

Partition of genomic regulatory regions based on chromatin states model.
ChromHMM v.1.21 was applied to build the chromatin states model at 200-bp
resolution with default parameters12 on A549 cell line (Encode Broad) for histone
marks: H3K04me1, H3K04me2, H3K04me3, H3K09ac, H3K09me3, H3K27ac,
H3K27me3, H3K36me3, and H3K79me2. The genomic regions, including pro-
moter regions, enhancer regions, transcribed regions, and repressed regions (het-
erochromatin), were partitioned based on resulting segments inferred as defined
chromatin states, which were deduced from chromatin-state signatures using a
multivariate hidden Markov model that explicitly models the combinatorial
presence or absence of each histone mark.

Repetitive elements. The repetitive elements were retrieved from UCSC Repeat-
Masker track (https://genome.ucsc.edu/cgi-bin/hgTrackUi?g=rmsk), which was cre-
ated using Arian Smit’s RepeatMasker program, through screening human genomic
DNA sequences for interspersed repeats and low complexity DNA sequences.

Identification of PMDs. The boundary of PMDs was inferred using whole-genome
shotgun bisulfite sequencing of lung cells from a healthy donor (GSM983647)
applying MethylSeekR (v.1.30.0) package69. Before PMD calling, CpG sites over-
lapping common SNPs (dbSNP build 137) were removed.

Motif identification and prediction of TF binding sites. The de novo methylated
DNA motifs in IPNs of each stage were identified by mEpigram v.0.07, which
discovers motifs by using position-specific weight matrices from the k-mers that
are most enriched in the positive sequences compared with the negative sequences
as “seeds” and extending the motifs in both directions70. The Tomtom tool (v.5.2.0)
from the MEME suite was used to select significantly enriched methylated DNA
motifs based on the database of known transcript factors (HOCOMOCO_v11)71.

Estimation of DNA methylation ITH. To estimate DNA methylation ITH, we
applied “methclone” (v.0.1) to identify epigenetic loci whose distributions of epi-
genetic allele (“epiallele”) clonality differed between paired tumor and normal
samples by quantifying the degree to which the compositions of epialleles at given
loci in the tumor sample were distinct from those in the normal tissue sample. An
epiallele was defined by setting 60 reads in four consecutive CpG sites as the
threshold to consider the epigenetic allele composition of the locus. We then
calculated the differences in epiallele entropy between each IPN sample and its
matched normal tissue sample. Loci with combinatorial entropy changes (ΔS)
below −60 between each IPN sample and its paired normal sample were defined as
epigenetic shift loci (termed “eloci”). To reduce the bias due to the different cov-
erage for each sample, we then calculated relative epiallele shifts (i.e., the nor-
malized number of eloci) via dividing the number of eloci by the total number of
assessed loci in each sample and then multiplying that ratio by the average number
of total loci across all samples72. We also assessed epigenetic polymorphism
(“epipolymorphism”) to measure the epiallelic diversity in each IPN sample by
calculating the frequency of each specific epiallele from multiple stochastic changes
in the frequencies of many epialleles73. We calculated 16 epiallele status (0000,
0100, 0010, 0001, 1000, 1100, 0110, 0011, 0101, 1010, 1001, 0111, 1011, 1101, 1110,
and 1111, where 1 represents a methylated CpG site and 0 represents an unme-
thylated CpG site), then epipolymorphism for each loci is defined as

P16
i¼1 Fi

2,
where F is the fraction of each epiallele status.

Locus overlap analysis. We applied LOLA23 to the genomic regions identified as
eloci (ΔS <−60) in all samples of each stage to evaluate the overlap between
genomic regions with methylation ITH and chromatin marks. The genomic regions
of all loci with ≥ 60 reads were used as background genomic regions, and the
selected genomic regions were mapped to a compendium of publicly available
histone mark profiles, including CTCF, H2AZ, H3K4me1, H3K4me2, H3K4me3,
H3K9ac, H3K9me3, H3K27me3, H3K27ac, H3K36me3, H3K79me2, and
H4K20me1 in A549 lung ADC cell line (http://hgdownload.soe.ucsc.edu/
goldenPath/hg19/encodeDCC/wgEncodeBroadHistone) and H3K27me3,
H3K4me3, H3K9me2, H3K9ac, and CTCF in an immortalized human bronchial
epithelial cell line (BEAS-2B; GSE56053)25. P-values in the enrichment analyses
were calculated using one-sided Fisher’s exact test. Adjustment for multiple testing
with q-value (false discovery rate adjusted p-value) was performed using the
Benjamini–Yekutieli method.

Construction of phylogenetic trees. To construct methylation-based phyloge-
netic trees from the RRBS data, we used promoter CpG sites (≥50 reads per CpG
site selected for all samples from each patient) with the most variable methylation
values (mean absolute deviation >10%) shared by all samples, including a normal
tissue sample used as the tree root, to build a Euclidean distance matrix. We built
the phylogenetic trees by applying a neighbor-joining algorithm from the “ape”
(v.5.4.1) package to independently infer phylogenetic relationships between IPN
specimens for each patient from the mutation and methylation profiles. To assess
the phylogenetic similarity between the genetic and epigenetic profiles, we
employed an independent but parallel distance matrix construction from the
mutation and methylation profiles for each IPN, in which the genetic distance was
quantified by Hamming distance based on all filtered mutations and methylation
distance was quantified by Euclidean distance based on methylation values of all
CpG sites (≥20 reads, MAD ≥ 20 for all samples in each IPN), and then calculated
the Spearman’s correlation coefficient for all pairwise samples grouped by IPNs.

Estimation of global hypomethylation. To determine global methylation levels,
we chose CpG sites (covered by ≥10 aligned reads) within evolutionarily young
subfamilies of LINE-1 repeat elements (L1HS and L1PA). LINE-1 family annota-
tion was obtained from the RepeatMasker of the UCSC genome browser. We
averaged the methylation values of the chosen CpG sites, to represent the global
methylation level of each sample.

Deconvolution of T cell profiles. To derive tumor-infiltrating T cell subtypes from
transcriptomic data previously published36, processed RNA-seq dataset (normal-
ized and log 2 transformed) comprise 197 normal lung tissues, 98 AIS/MIA, and 99
ADC samples were retrieved from EGAS00001004006. ImmuCellAI74 was applied
to infer immune cell components for each sample.

To derive the infiltration of T cell repertoire from RRBS data, we first obtained a
reference methylation signature by retrieving the methylation calls of whole-
genome bisulfite datasets from the BLUEPRINT epigenome project, including
those for samples of regulatory T cells (EGAX00001343016/EGAX00001236257 in
EGAD00001002492) and CD8+ T cells (EGAX00001195937/EGAX00001195943
in EGAD00001002486). Only promoter CpG sites that were covered by ≥5 reads in
all samples were retained and binned with a 50-bp window by mean methylation
values, and then only 50-bp binned regions that overlap with 50-bp binned regions
of CpG sites covered by the RRBS methylation profiles of preneoplastic lesions in
all samples were used for reference signature extraction by non-negative matrix
factorization implemented in the “MethylCIBERSORT” (v.0.2.0) package. We then
performed DNA methylation deconvolution (average methylation level by 50-bp
bin) using aforementioned BLUEPRINT signature and the CIBERSORT webserver
(https://cibersort.stanford.edu). We performed T cell deconvolution in relative
mode, running 100 permutations with quantile normalization disabled75. The
resulting immune-cellular fractions were used to compare samples of different
pathological stages. The average values of immune cell infiltration for each sample
inferred by whole-genome bisulfite analysis from two patients independently were
used to infer Treg/CD8 ratio.

Statistical analysis. Violin plots were created using the “geom_violin” function in
R statistical package ggplot2 (v.0.9.1) to represent data point density along the
Y-axis, and the “stat_summary” function from ggplot2 (v.0.9.1) was used to cal-
culate the mean as the center point. Differences in DMR numbers, eloci numbers,
and immune cell infiltration between IPN specimens of different stages were
assessed using the Kruskal–Wallis H test. We used quantile regression to assess the
differential entropy values at the 1st percentile (low percentile of entropy was
chosen to reflect the loci with biological interest) and epipolymorphism values at
the 50th percentile between different groups. We used a two-sided Pearson’s
correlation coefficient to compare methylation profiles between two samples and
between groups of samples of different stages. We used a two-sided Spearman’s
correlation coefficient to determine the extent to which distance matrices were
correlated with DNA methylation profiles and somatic mutation profiles.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The RRBS dataset has been deposited at European Bioinformatics Institute European
Genome–phenome Archive (EGA) (accession number: EGAS00001004610) through
controlled access. Whole-exome sequencing is under the accession code:
EGAD00001004960. To protect patient privacy, interested researchers need to apply via a
data access committee (DAC), which will grant all reasonable requests. GSM983647
(whole-genome shotgun bisulfite sequencing of human normal lung cells) was
downloaded from GEO. EGAS00001004006 (RNA-seq of human preinvasive and
invasive lung adenocarcinoma) was downloaded from EGA. EGAD00001002492
(bisulfite-seq of regulatory T cells from human venous blood) and EGAD00001002486
(bisulfite-seq of CD8+ T cells from human venous blood) were downloaded from EGA,
respectively. All other data may be found within the main manuscript or Supplementary
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information or available from the authors upon request. Source data are provided with
this paper.
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