39 research outputs found

    Smith-Waterman peak alignment for comprehensive two-dimensional gas chromatography-mass spectrometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comprehensive two-dimensional gas chromatography coupled with mass spectrometry (GC × GC-MS) is a powerful technique which has gained increasing attention over the last two decades. The GC × GC-MS provides much increased separation capacity, chemical selectivity and sensitivity for complex sample analysis and brings more accurate information about compound retention times and mass spectra. Despite these advantages, the retention times of the resolved peaks on the two-dimensional gas chromatographic columns are always shifted due to experimental variations, introducing difficulty in the data processing for metabolomics analysis. Therefore, the retention time variation must be adjusted in order to compare multiple metabolic profiles obtained from different conditions.</p> <p>Results</p> <p>We developed novel peak alignment algorithms for both homogeneous (acquired under the identical experimental conditions) and heterogeneous (acquired under the different experimental conditions) GC × GC-MS data using modified Smith-Waterman local alignment algorithms along with mass spectral similarity. Compared with literature reported algorithms, the proposed algorithms eliminated the detection of landmark peaks and the usage of retention time transformation. Furthermore, an automated peak alignment software package was established by implementing a likelihood function for optimal peak alignment.</p> <p>Conclusions</p> <p>The proposed Smith-Waterman local alignment-based algorithms are capable of aligning both the homogeneous and heterogeneous data of multiple GC × GC-MS experiments without the transformation of retention times and the selection of landmark peaks. An optimal version of the SW-based algorithms was also established based on the associated likelihood function for the automatic peak alignment. The proposed alignment algorithms outperform the literature reported alignment method by analyzing the experiment data of a mixture of compound standards and a metabolite extract of mouse plasma with spiked-in compound standards.</p

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
    corecore