58,524 research outputs found

    Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light

    Get PDF
    Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer’s dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector. A sensitivity enhancement of up to 3.2±0.1  dB beyond the shot noise limit is achieved. This nonclassical improvement corresponds to a 5%–8% increase of the binary neutron star horizon. The squeezing injection was fully automated and over the first 5 months of the third joint LIGO-Virgo observation run O3 squeezing was applied for more than 99% of the science time. During this period several gravitational-wave candidates have been recorded

    Measurement of the top quark mass in the dileptonic t(t)over-bar decay channel using the mass observables M-bl, M-T2, and M-blv in pp collisions at root=8 TeV

    Get PDF
    Peer reviewe

    Search for eccentric binary black hole mergers with Advanced LIGO and Advanced Virgo during their first and second observing runs

    Get PDF
    When formed through dynamical interactions, stellar-mass binary black holes (BBHs) may retain eccentric orbits (e > 0.1 at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically formed binaries from isolated BBH mergers. Current template-based gravitational-wave searches do not use waveform models associated with eccentric orbits, rendering the search less efficient for eccentric binary systems. Here we present the results of a search for BBH mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. We carried out the search with the coherent WaveBurst algorithm, which uses minimal assumptions on the signal morphology and does not rely on binary waveform templates. We show that it is sensitive to binary mergers with a detection range that is weakly dependent on eccentricity for all bound systems. Our search did not identify any new binary merger candidates. We interpret these results in light of eccentric binary formation models. We rule out formation channels with rates greater than about 100 Gpc−3 yr−1 for e > 0.1, assuming a black hole mass spectrum with a power-law index less than about 2

    Study of B Meson Production in p plus Pb Collisions at root s(NN)=5.02 TeV Using Exclusive Hadronic Decays

    Get PDF
    Peer reviewe

    Search for a light pseudoscalar Higgs boson produced in association with bottom quarks in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Measurement of the B-+/- Meson Nuclear Modification Factor in Pb-Pb Collisions at root s(NN)=5.02 TeV

    Get PDF
    Peer reviewe

    Search for dijet resonances in proton-proton collisions at root s=13 TeV and constraints on dark matter and other models

    Get PDF
    Correction: DOI:10.1016/j.physletb.2017.09.029Peer reviewe

    Observation of Top Quark Production in Proton-Nucleus Collisions

    Get PDF
    Peer reviewe

    Pseudorapidity distributions of charged hadrons in proton-lead collisions at root s(NN)=5:02 and 8.16 TeV

    Get PDF
    The pseudorapidity distributions of charged hadrons in proton-lead collisions at nucleon-nucleon center-of-mass energies root s(NN) = 5.02 and 8.16 TeV are presented. The measurements are based on data samples collected by the CMS experiment at the LHC. The number of primary charged hadrons produced in non-single-diffractive proton-lead collisions is determined in the pseudorapidity range vertical bar eta(lab)vertical bar vertical bar(vertical bar eta cm vertical bar) <0.5 are 17.1 +/- 0.01 (stat) +/- 0.59 (syst) and 20.10 +/- 0.01 (stat) +/- 0.5(syst) at root s(NN) = 5.02 and 8.16 TeV, respectively. The particle densities per participant nucleon are compared to similar measurements in proton-proton, proton-nucleus, and nucleus-nucleus collisions.Peer reviewe

    Study of Jet Quenching with Z plus jet Correlations in Pb-Pb and pp Collisions at root s(NN)=5.02 TeV

    Get PDF
    Peer reviewe
    corecore