94 research outputs found

    Heat treatment significantly increases the sharpness of silcrete stone tools

    Get PDF
    Humans were regularly heat-treating stone tool raw materials as early as 130,000 years ago. The late Middle Stone Age (MSA) and Late Stone Age (LSA) of South Africa's Western Cape region provides some of the earliest and most pervasive archaeological evidence for this behaviour. While archaeologists are beginning to understand the flaking implications of raw material heat treatment, its potential functional benefits remain unanswered. Using silcrete from the Western Cape region, we investigate the impact of heat treatment on stone tool cutting performance. We quantify the sharpness of silcrete in its natural, unheated form, before comparing it with silcrete heated in three different conditions. Results show that heat-treated silcrete can be significantly sharper than unheated alternatives, with cutting forces halving and energy requirements reducing by approximately two-thirds. The data suggest that silcrete may have been heat treated during the South African MSA and LSA to increase the sharpness and performance of stone cutting edges. This early example of material engineering has implications for understanding Stone Age populations’ technological capabilities, inventiveness and raw material choices. We predict that heat-treatment behaviours in other prehistoric and ethnographic contexts may also be linked to increases in edge sharpness and concerns about functional performance

    Genetic properties of feed efficiency parameters in meat-type chickens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Feed cost constitutes about 70% of the cost of raising broilers, but the efficiency of feed utilization has not kept up the growth potential of today's broilers. Improvement in feed efficiency would reduce the amount of feed required for growth, the production cost and the amount of nitrogenous waste. We studied residual feed intake (RFI) and feed conversion ratio (FCR) over two age periods to delineate their genetic inter-relationships.</p> <p>Methods</p> <p>We used an animal model combined with Gibb sampling to estimate genetic parameters in a pedigreed random mating broiler control population.</p> <p>Results</p> <p>Heritability of RFI and FCR was 0.42-0.45. Thus selection on RFI was expected to improve feed efficiency and subsequently reduce feed intake (FI). Whereas the genetic correlation between RFI and body weight gain (BWG) at days 28-35 was moderately positive, it was negligible at days 35-42. Therefore, the timing of selection for RFI will influence the expected response. Selection for improved RFI at days 28-35 will reduce FI, but also increase growth rate. However, selection for improved RFI at days 35-42 will reduce FI without any significant change in growth rate. The nature of the pleiotropic relationship between RFI and FCR may be dependent on age, and consequently the molecular factors that govern RFI and FCR may also depend on stage of development, or on the nature of resource allocation of FI above maintenance directed towards protein accretion and fat deposition. The insignificant genetic correlation between RFI and BWG at days 35-42 demonstrates the independence of RFI on the level of production, thereby making it possible to study the molecular, physiological and nutrient digestibility mechanisms underlying RFI without the confounding effects of growth. The heritability estimate of FCR was 0.49 and 0.41 for days 28-35 and days 35-42, respectively.</p> <p>Conclusion</p> <p>Selection for FCR will improve efficiency of feed utilization but because of the genetic dependence of FCR and its components, selection based on FCR will reduce FI and increase growth rate. However, the correlated responses in both FI and BWG cannot be predicted accurately because of the inherent problem of FCR being a ratio trait.</p

    Climate change impacts on banana yields around the world

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this r4ecordData availability: All data used are publicly available and open access. All banana production data sources are listed in Supplementary Table 1. All climatic and topographic data sources are listed in the Methods.Nutritional diversity is a key element of food security1,2,3. However, research on the effects of climate change on food security has, thus far, focused on the main food grains4,5,6,7,8, while the responses of other crops, particularly those that play an important role in the developing world, are poorly understood. Bananas are a staple food and a major export commodity for many tropical nations9. Here, we show that for 27 countries—accounting for 86% of global dessert banana production—a changing climate since 1961 has increased annual yields by an average of 1.37 t ha−1. Past gains have been largely ubiquitous across the countries assessed and African producers will continue to see yield increases in the future. However, global yield gains could be dampened or disappear, reducing to 0.59 t ha−1 and 0.19 t ha−1 by 2050 under the climate scenarios for Representative Concentration Pathways 4.5 and 8.5, respectively, driven by declining yields in the largest producers and exporters. By quantifying climate-driven and technology-driven influences on yield, we also identify countries at risk from climate change and those capable of mitigating its effects or capitalizing on its benefits.Biotechnology and Biological Sciences Research Council (BBSRC)European Union Horizon 202

    Millipede taxonomy after 250 years: classification and taxonomic practices in a mega-diverse yet understudied arthropod group.

    Get PDF
    BACKGROUND: The arthropod class Diplopoda is a mega-diverse group comprising >12,000 described millipede species. The history of taxonomic research within the group is tumultuous and, consequently, has yielded a questionable higher-level classification. Few higher-taxa are defined using synapomorphies, and the practice of single taxon descriptions lacking a revisionary framework has produced many monotypic taxa. Additionally, taxonomic and geographic biases render global species diversity estimations unreliable. We test whether the ordinal taxa of the Diplopoda are consistent with regards to underlying taxonomic diversity, attempt to provide estimates for global species diversity, and examine millipede taxonomic effort at a global geographic scale. METHODOLOGY/PRINCIPAL FINDINGS: A taxonomic distinctness metric was employed to assess uniformity of millipede ordinal taxa. We found that ordinal-level taxa are not uniform and are likely overinflated with higher-taxa when compared to related groups. Several methods of estimating global species richness were employed (Bayesian, variation in taxonomic productivity, extrapolation from nearly fully described taxa). Two of the three methods provided estimates ranging from 13,413-16,760 species. Variations in geographic diversity show biases to North America and Europe and a paucity of works on tropical taxa. CONCLUSIONS/SIGNIFICANCE: Before taxa can be used in an extensible way, they must be definable with respect to the diversity they contain and the diagnostic characters used to delineate them. The higher classification for millipedes is shown to be problematic from a number of perspectives. Namely, the ordinal taxa are not uniform in their underlying diversity, and millipedes appear to have a disproportionate number of higher-taxa. Species diversity estimates are unreliable due to inconsistent taxonomic effort at temporal, geographic, and phylogenetic scales. Lack of knowledge concerning many millipede groups compounds these issues. Diplopods are likely not unique in this regard as these issues may persist in many other diverse yet poorly studied groups

    Emerging New Crop Pests: Ecological Modelling and Analysis of the South American Potato Psyllid Russelliana solanicola (Hemiptera: Psylloidea) and Its Wild Relatives

    Get PDF
    © 2017 Syfert et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Maternal and perinatal outcomes after bariatric surgery: a spanish multicenter study

    Get PDF
    The final publication is avaliable at Springer Link[Abstract] Background. Bariatric surgery (BS) has become more frequent among women of child-bearing age. Data regarding the underlying maternal and perinatal risks are scarce. The objective of this nationwide study is to evaluate maternal and perinatal outcomes after BS. Methods. We performed a retrospective observational study of 168 pregnancies in 112 women who underwent BS in 10 tertiary hospitals in Spain over a 15-year period. Maternal and perinatal outcomes, including gestational diabetes mellitus (GDM), pregnancy-associated hypertensive disorders (PAHD), pre-term birth cesarean deliveries, small and large for gestational age births (SGA, LGA), still births, and neonatal deaths, were evaluated. Results were further compared according to the type of BS performed: restrictive techniques (vertical-banded gastroplasty, sleeve gastrectomy, and gastric banding), Roux-en-Y gastric bypass (RYGB), and biliopancreatic diversion (BPD). Results. GDM occurred in five (3 %) pregnancies and there were no cases of PAHD. Women whose pregnancies occurred before 1 year after BS had a higher pre-gestational body mass index (BMI) than those who got pregnant 1 year after BS (34.6 ± 7.7 vs 30.4 ± 5.3 kg/m2, p = 0.007). In pregnancies occurring during the first year after BS, a higher rate of stillbirths was observed compared to pregnancies occurring after this period of time (35.5 vs 16.8 %, p = 0.03). Women who underwent BPD delivered a higher rate of SGA babies than women with RYGB or restrictive procedures (34.8, 12.7, and 8.3 %, respectively). Conclusions. Pregnancy should be scheduled at least 1 year after BS. Malabsorptive procedures are associated to a higher rate of SGA births

    Higher fungal diversity is correlated with lower CO2 emissions from dead wood in a natural forest

    Get PDF
    Wood decomposition releases almost as much CO2 to the atmosphere as does fossil-fuel combustion, so the factors regulating wood decomposition can affect global carbon cycling. We used metabarcoding to estimate the fungal species diversities of naturally colonized decomposing wood in subtropical China and, for the first time, compared them to concurrent measures of CO2 emissions. Wood hosting more diverse fungal communities emitted less CO2, with Shannon diversity explaining 26 to 44% of emissions variation. Community analysis supports a ‘pure diversity’ effect of fungi on decomposition rates and thus suggests that interference competition is an underlying mechanism. Our findings extend the results of published experiments using low-diversity, laboratory-inoculated wood to a high-diversity, natural system. We hypothesize that high levels of saprotrophic fungal biodiversity could be providing globally important ecosystem services by maintaining dead-wood habitats and by slowing the atmospheric contribution of CO2 from the world’s stock of decomposing wood. However, large-scale surveys and controlled experimental tests in natural settings will be needed to test this hypothesis

    Bats in the anthropogenic matrix: Challenges and opportunities for the conservation of chiroptera and their ecosystem services in agricultural landscapes

    Get PDF
    Intensification in land-use and farming practices has had largely negative effects on bats, leading to population declines and concomitant losses of ecosystem services. Current trends in land-use change suggest that agricultural areas will further expand, while production systems may either experience further intensification (particularly in developing nations) or become more environmentally friendly (especially in Europe). In this chapter, we review the existing literature on how agricultural management affects the bat assemblages and the behavior of individual bat species, as well as the literature on provision of ecosystem services by bats (pest insect suppression and pollination) in agricultural systems. Bats show highly variable responses to habitat conversion, with no significant change in species richness or measures of activity or abundance. In contrast, intensification within agricultural systems (i.e., increased agrochemical inputs, reduction of natural structuring elements such as hedges, woods, and marshes) had more consistently negative effects on abundance and species richness. Agroforestry systems appear to mitigate negative consequences of habitat conversion and intensification, often having higher abundances and activity levels than natural areas. Across biomes, bats play key roles in limiting populations of arthropods by consuming various agricultural pests. In tropical areas, bats are key pollinators of several commercial fruit species. However, these substantial benefits may go unrecognized by farmers, who sometimes associate bats with ecosystem disservices such as crop raiding. Given the importance of bats for global food production, future agricultural management should focus on “wildlife-friendly” farming practices that allow more bats to exploit and persist in the anthropogenic matrix so as to enhance provision of ecosystem services. Pressing research topics include (1) a better understanding of how local-level versus landscape-level management practices interact to structure bat assemblages, (2) the effects of new pesticide classes and GM crops on bat populations, and (3) how increased documentation and valuation of the ecosystem services provided by bats could improve attitudes of producers toward their conservation

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore