66 research outputs found

    A Fokker-Planck formalism for diffusion with finite increments and absorbing boundaries

    Get PDF
    Gaussian white noise is frequently used to model fluctuations in physical systems. In Fokker-Planck theory, this leads to a vanishing probability density near the absorbing boundary of threshold models. Here we derive the boundary condition for the stationary density of a first-order stochastic differential equation for additive finite-grained Poisson noise and show that the response properties of threshold units are qualitatively altered. Applied to the integrate-and-fire neuron model, the response turns out to be instantaneous rather than exhibiting low-pass characteristics, highly non-linear, and asymmetric for excitation and inhibition. The novel mechanism is exhibited on the network level and is a generic property of pulse-coupled systems of threshold units.Comment: Consists of two parts: main article (3 figures) plus supplementary text (3 extra figures

    Towards quantum thermodynamics in electronic circuits

    Get PDF
    Electronic circuits operating at sub-kelvin temperatures are attractive candidates for studying classical and quantum thermodynamics: their temperature can be controlled and measured locally with exquisite precision, and they allow experiments with large statistical samples. The availability and rapid development of devices such as quantum dots, single-electron boxes and superconducting qubits only enhance their appeal. But although these systems provide fertile ground for studying heat transport, entropy production and work in the context of quantum mechanics, the field remains in its infancy experimentally. Here, we review some recent experiments on quantum heat transport, fluctuation relations and implementations of Maxwell’s demon, revealing the rich physics yet to be fully probed in these systems.Peer reviewe

    Single nucleotide polymorphisms in DNA repair genes as risk factors associated to prostate cancer progression

    Get PDF
    Background Besides serum levels of PSA, there is a lack of prostate cancer specific biomarkers. It is need to develop new biological markers associated with the tumor behavior which would be valuable to better individualize treatment. The aim of this study was to elucidate the relationship between single nucleotide polymorphisms (SNPs) in genes involved in DNA repair and prostate cancer progression.Methods A total of 494 prostate cancer patients from a Spanish multicenter study were genotyped for 10 SNPs in XRCC1, ERCC2, ERCC1, LIG4, ATM and TP53 genes. The SNP genotyping was made in a Biotrove OpenArray® NT Cycler. Clinical tumor stage, diagnostic PSA serum levels, and Gleason score at diagnosis were obtained for all participants. Genotypic and allelic frequencies were determined using the web-based environment SNPator.Results SNPs rs11615 (ERCC1) and rs17503908 (ATM) appeared as risk factors for prostate cancer aggressiveness. Patients wild homozygous for these SNPs (AA and TT, respectively) were at higher risk for developing cT2b – cT4 (OR = 2.21 (confidence interval (CI) 95% 1.47 – 3.31), p < 0.001) and Gleason scores ≥ 7 (OR = 2.22 (CI 95% 1.38 – 3.57), p < 0.001), respectively. Moreover, those patients wild homozygous for both SNPs had the greatest risk of presenting D’Amico high-risk tumors (OR = 2.57 (CI 95% 1.28 – 5.16)).Conclusions Genetic variants at DNA repair genes are associated with prostate cancer progression, and would be taken into account when assessing the malignancy of prostate cancer.This work was subsidized by a grant from the Instituto de Salud Carlos III (Ministerio de Economía y Competitividad from Spain), ID: PI12/01867. Almudena Valenciano has a grant from the Instituto Canario de Investigación del Cáncer (ICIC)

    Transposon based tagging: IRAP, REMAP, and iPBS

    Get PDF
    Retrotransposons are a major component of virtually all eukaryotic genomes, which makes them useful as molecular markers. Various molecular marker systems have been developed that exploit the ubiquitous nature of these genetic elements and their property of stable integration into dispersed chromosomal loci that are polymorphic within species. To detect polymorphisms for retrotransposon insertions, marker systems generally rely on PCR amplification between the retrotransposon termini and some component of flanking genomic DNA. The main methods of IRAP, REMAP, RBIP, and SSAP all detect the polymorphic sites at which the retrotransposon DNA is integrated into the genome. Marker systems exploiting these methods can be easily developed and are inexpensively deployed in the absence of extensive genome sequence data. Here, we describe protocols for the IRAP, REMAP and iPBS techniques, including methods for PCR amplification with a single primer or with two primers, agarose gel electrophoresis of the product using optimal electrophoresis buffers, we also describe iPBS techniques for the rapid isolation of retrotransposon termini and full-length elements.Peer reviewe

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Measurement of b hadron lifetimes in exclusive decays containing a J/psi in p-pbar collisions at sqrt(s)=1.96TeV

    Get PDF
    We report on a measurement of bb-hadron lifetimes in the fully reconstructed decay modes B^+ -->J/Psi K+, B^0 --> J/Psi K*, B^0 --> J/Psi Ks, and Lambda_b --> J/Psi Lambda using data corresponding to an integrated luminosity of 4.3 fb1{\rm fb}^{-1}, collected by the CDF II detector at the Fermilab Tevatron. The measured lifetimes are τ\tauB^+ = 1.639±0.009(stat)±0.009(syst) ps1.639 \pm 0.009 ({\rm stat}) \pm 0.009 {\rm (syst) ~ ps}, τ\tauB^0 = 1.507±0.010(stat)±0.008(syst) ps1.507 \pm 0.010 ({\rm stat}) \pm 0.008 {\rm (syst) ~ ps} and τ\tauLambda_b = 1.537±0.045(stat)±0.014(syst) ps1.537 \pm 0.045 ({\rm stat}) \pm 0.014 {\rm (syst) ~ ps}. The lifetime ratios are τ\tauB^+/τ\tauB^0 = 1.088±0.009(stat)±0.004(syst)1.088 \pm 0.009 ({\rm stat})\pm 0.004 ({\rm syst}) and τ\tauLambda_b/τ\tauB^0 = 1.020±0.030(stat)±0.008(syst)1.020 \pm 0.030 ({\rm stat})\pm 0.008 ({\rm syst}). These are the most precise determinations of these quantities from a single experiment.Comment: revised version. accepted for PRL publicatio

    Saving Human Lives: What Complexity Science and Information Systems can Contribute

    Get PDF
    We discuss models and data of crowd disasters, crime, terrorism, war and disease spreading to show that conventional recipes, such as deterrence strategies, are often not effective and sufficient to contain them. Many common approaches do not provide a good picture of the actual system behavior, because they neglect feedback loops, instabilities and cascade effects. The complex and often counter-intuitive behavior of social systems and their macro-level collective dynamics can be better understood by means of complexity science. We highlight that a suitable system design and management can help to stop undesirable cascade effects and to enable favorable kinds of self-organization in the system. In such a way, complexity science can help to save human lives.Comment: 67 pages, 25 figures; accepted for publication in Journal of Statistical Physics [for related work see http://www.futurict.eu/

    Search for High Mass Resonances Decaying to Muon Pairs in root s=1.96 TeV p(p)over-bar Collisions

    Get PDF
    We present a search for a new narrow, spin-1, high mass resonance decaying to mu(+)mu(-) + X, using a matrix-element-based likelihood and a simultaneous measurement of the resonance mass and production rate. In data with 4.6 fb(-1) of integrated luminosity collected by the CDF detector in p (p) over bar collisions at root s = 1960 GeV, the most likely signal cross section is consistent with zero at 16% confidence level. We therefore do not observe evidence for a high mass resonance and place limits on models predicting spin-1 resonances, including M > 1071 GeV/c(2) at 95% confidence level for a Z' boson with the same couplings to fermions as the Z boson

    Measurement of b Hadron Lifetimes in Exclusive Decays Containing a J/Psi in p(p)over-bar Collisions at root s=1.96 TeV

    Get PDF
    We report on a measurement of b-hadron lifetimes in the fully reconstructed decay modes B+-> J/psi K+, B-0 -> J/psi K*(892)(0), B-0 -> J/psi K-s(0), and Lambda(0)(b)-> J/psi Lambda(0) using data corresponding to an integrated luminosity of 4.3 fb(-1), collected by the CDF II detector at the Fermilab Tevatron. The measured lifetimes are tau(B+)=[1.639 +/- 0.009(stat)+/- 0.009(syst)]ps, tau(B-0)=[1.507 +/- 0.010(stat)+/- 0.008(syst)]ps, and tau(Lambda(0)(b))=[1.537 +/- 0.045(stat)+/- 0.014(syst)]ps. The lifetime ratios are tau(B+)/tau(B-0)=[1.088 +/- 0.009(stat)+/- 0.004(syst)] and tau(Lambda(0)(b))/tau(B-0)=[1.020 +/- 0.030(stat)+/- 0.008(syst)]. These are the most precise determinations of these quantities from a single experiment

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams
    corecore