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Towards quantum thermodynamics in electronic circuits

Jukka P. Pekola1

1Low Temperature Laboratory (OVLL),

Aalto University School of Science,

P.O. Box 13500, 00076 Aalto, Finland

(Dated: October 27, 2014)

Abstract

Electronic circuits operating at sub-kelvin temperatures are attractive candidates for studying

classical and quantum thermodynamics: their temperature can be controlled and measured lo-

cally with exquisite precision, and they allow for experiments with large statistical samples. The

availability and rapid development of devices such as quantum dots, single-electron boxes and

superconducting qubits only enhances their appeal. But although these systems provide fertile

ground for studying heat transport, entropy production and work in the context of quantum me-

chanics, the field remains in its infancy experimentally. Here, we review some recent experiments on

quantum heat transport, fluctuation relations and implementations of Maxwell’s demon, revealing

the rich physics yet to be fully probed in these systems.
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Thermodynamics and statistical physics have attracted renewed interest in recent years,

largely due to an improvement in the experimental control of small structures, all the way

down to the nanoscale. Phenomena on these scales can be described using stochastic ther-

modynamics [1] that includes the influence of fluctuations inherent in such small systems,

and applies to non-equilibrium processes far beyond the linear response regime. Until re-

cently, experiments on molecules and soft matter at ambient temperatures have dominated

the field [2]. But such experiments cannot be easily extended into the quantum regime,

which presents an exciting frontier in this area of research. Electrical circuits at low tem-

peratures, on the other hand, are suitable for thermodynamic studies in both classical and

quantum regimes. The ‘quantumness’ of these circuits has been widely demonstrated over

the past decade by the vigorous activity on the coherent properties of both superconducting

and semiconducting qubits at low temperatures.

DISSIPATION AND ENTROPY PRODUCTION IN ELECTRONIC CIRCUITS

Electrons in a metal form a Fermi distribution in equilibrium with a phonon bath. These

electrons can easily be driven out of equilibrium, for example by applying Joule heating

[3]. A key feature of these circuits, which operate at sub-kelvin temperatures, is a striking

separation of timescales, together with the possibility of controlling them. For example,

relaxation between electrons and phonons at low temperatures is orders of magnitude slower

than their internal relaxation rates. This means that sub-systems with differing but well-

defined temperatures can exist within the same system. The phonon system is typically

assumed to be the ‘true’ bath, with constant temperature provided by the macroscopic

thermostat (or cryostat). Adapting this typical scenario can give rise to an ideal platform

from which to study the statistical physics and thermodynamics of nanostructures at sub-

kelvin temperatures (Fig. 1a).

A biased tunnel barrier between two conductors with a chemical potential difference of

∆µ = eV , where V is the voltage drop (see Figs 1b,c), forms the basic unit for studies of

fluctuations and non-equilibrium physics in a circuit. Consider a single tunneling event,

depicted in the figure as the creation of a hole-like and particle-like excitation in the left and

right lead, respectively. For this event, the transition rate Γ is determined by the barrier

itself, ∆µ, together with the temperatures T1, T2 of the leads and the type and density of
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the carriers. Tunneling is a stochastic Poisson process, which obeys the principle of detailed

balance, Γ(−∆µ) = e−∆µ/kBTΓ(∆µ), for equilibrium leads (T1 = T2 = T ). For a tunneling

elctron with energy E, the energy deposition to the source lead is given by ∆E1 = µ1 − E

and the entropy production is ∆S1 = (µ1−E)/T1, where µ1 is the chemical potential of the

lead. Correspondingly, for the drain lead, we have an energy deposition of ∆E2 = E − µ2

and an entropy production of ∆S2 = (E−µ2)/T2. In general, the total energy dissipation in

this event is thus ∆E = ∆E1 + ∆E2 = µ1− µ2 = eV , determined by the chemical potential

difference only.

If fluctuations are ignored, and there are tunneling events occuring at an average rate

of f = I/e, where I is the mean electric current through the barrier, the average power

dissipated is P = f∆E = IV . This result is quite general, independent of the type of

the conductors at the junction. Although this total (average) power in a tunnel contact is

positive, meaning there is net heating, one can engineer structures, for example by applying

materials with a gap in the density of states, where heat is distributed unequally between

the two electrodes of the junction. In this way, evaporative cooling of electrodes can be

achieved in both superconducting [3, 4] and semiconducting [5] hybrid structures.

QUANTUM HEAT TRANSPORT

Let us first take a look at some experiments in which steady-state quantum heat transport

has been investigated in a circuit. Based on information-theoretic arguments, John Pendry

predicted in 1983 that a single quantum channel could conduct heat only up to a universal

maximum value, determined by the quantum of thermal conductance GQ = πk2
BT/(6~) at

temperature T [6]. Theoretical predictions of quantized thermal conductance for various

types of carriers, phonons, photons and electrons were tested in nanostructures at sub-

kelvin temperatures in the years following this claim. The development of nanosized circuits

moved things forward, as the ability to create different local temperatures over nanoscale

distances at low temperatures allowed for precise measurements of the thermal conductance

Gth of small conductors. In 2000, a beautiful experiment demonstrated that phonons in

a nanobridge indeed carry heat at a rate of GQ∆T per conduction channel, where ∆T

is the differential temperature bias around T , applied across the bridge [7]. The same

effect was later seen in experiments in a superconducting circuit with two normal metal
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FIG. 1: Dissipation and relaxation in electronic circuits at low temperatures. a, A basic

generic thermal model. A system, for example a charge state in a single-electron experiment or

qubit, is driven by a source of work. The system interacts with the Fermi-distributed electrons,

which, in turn, tend to thermalize with the bath of phonons through electron-phonon coupling.

The state of the system and/or the temperature of the electrons Te are measured in real time. b,

A biased tunnel junction, formed of two metal leads to the left and right of the overlap area where

the two conductors are attached by an oxide barrier. c, Dissipation in a tunneling event through

a barrier. An excitation is created on both sides of the barrier.

resistors interacting through thermal noise (or photons) [8, 9]. A classical anologue of

these experiments was recently implemented in a measurement with macroscopic resistors

around room temperature, by detecting the thermal noise voltage across them [10]. In that

experiment, the full distribution of heat transport was also measured. A recent experiment

[11] provided a precision measurement of GQ of electrons across a semiconducting quantum

point contact. These measurements [7–9, 11] demonstrate the power of hybrid micro- and

nanocircuits at low temperatures as an arena for experiments on quantum thermodynamics

and non-equilibrium thermal physics.
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FLUCTUATION RELATIONS

The importance of fluctuations in small systems with just few degrees of freedom has also

led to an upsurge of experimental and theoretical activity in the stochastic thermodynamics

and statistical mechanics of circuits. The classical version of the linear fluctuation-dissipation

theorem (FDT) for heat current Q̇ is SQ̇ = 2kBT
2Gth, in analogy with SI = 2kBTG for the

noise of an electrical current I of a scatterer with conductance G, see for example [12]. Unlike

that for the electrical current, the corresponding quantum version of the FDT for heat is

still under debate [13–15]. More recently, non-equilibrium fluctuations far from equilibrium

beyond the linear FDTs have attracted interest. The non-equilibrium fluctuation theorem

[1, 16] governing entropy S production can be cast generically in the form

P (∆S)/P (−∆S) = e∆S/kB , (1)

stating that the probabilities P for either increasing or decreasing the entropy by an amount

∆S are related by this general equality in a given process. This relation leads to

〈e−∆S/kB〉 = 1 (2)

by employing the definition 〈e−∆S/kB〉 =
∫

d∆SP (∆S)e−∆S/kB . The expectation value 〈·〉 is

to be understood as the average outcome of many repeated measurements each under the

same protocol.

Electrical circuits at low temperatures provide an interesting realization of non-

equilibrium phenomena, and a well-controlled test bed for the fluctuations and dissipation

that occur within them. The basic fluctuation theorem (see eq. (1) in Box 1) has been tested

in experiments on a double quantum dot (DQD) [17, 18]. Although it is a quantum dot

structure, the experiment itself is in the classical single-electron tunneling regime and thus

probes the classical fluctuation relations. The set-up for this experiment is shown in Fig. 2.

There are two dots between the source and drain leads at the left and right, respectively.

The extra number of electrons on each dot, governed by the Coulomb energy of the small

structure, is monitored by a quantum point contact (QPC). This QPC is asymmetrically

coupled to the dots and therefore its electrical conductance is sensitive to the occupations

(nL, nR), where nL (nR) is the number of extra electrons on the left (right) dot. At low

enough temperatures, only three charge states are possible: (0, 0), (0, 1), (1, 0). The QPC
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can resolve between these three states, and can then be used to perform full counting statis-

tics of charge, that is, to determine the full distribution of the number of charges traversed

through the structure.

The drain-source voltage supply biased at voltage VDQD does the work that leads to

dissipation when n charges tunnel between these leads down in the potential. More precisely,

the change of entropy when n electrons (n can be positive or negative) tunnel from source to

drain is neVDQD/T , where T is now the common temperature of the two leads. For measuring

times τ that are long enough that one can neglect the contribution of the internal charge

state configuration on the dots in the beginning and end of the experiment, one may then

write eq. (1) in the form P (n, τ)/P (−n, τ) = eneVDQD/kBT . Under these fixed voltage bias

conditions, the fluctuation relation then boils down to a measurement of electron counting

statistics under detailed-balance conditions at temperature T .

These experiments serve as a beautiful demonstration of the principles of a fluctuation

theorem in a well characterized set-up. Yet the fluctuation theorem was not fully satisfied

in this study (20 - 30 % discrepancy in logarithmic ratio of the probabilities), due to the

measurement back-action and low bandwidth (‘slowness’) of the QPC detector [19, 20].

Non-equilibrium (non-linear) fluctuations of electrical current have also been highlighted in

experiments on a semiconducting quantum conductor in the form of an Aharonov-Bohm

ring [21].

The non-equilibrium fluctuation relations can be written also for systems under time-

dependent driving conditions. In this context, the work and, in particular, the so-called

dissipated work become important concepts. A key fluctuation relation is then the Jarzynski

equality [22] for a system coupled to a single heat bath, which takes a form similar to eq.

(2) in Box 1,

〈e−β(W−∆F )〉 = 1. (3)

Here β = (kBT )−1 is the inverse temperature of the bath, W is the work done on the system

of interest, and ∆F is the change of its equilibrium free energy between the beginning

and end points of the protocol. The Jarzynski equality is only valid for a system that is

initially in thermal equilibrium with the bath, but it applies for driving protocols far from

equilibrium. Comparing eqs (2) and (3), we see that (W −∆F )/T is the entropy produced

in the driven process. Based on elementary mathematical arguments, the equality implies

that 〈W 〉 ≥ ∆F . That is, the second law of thermodynamics holds in the thermodynamic
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FIG. 2: Testing the fluctuation theorem experimentally. a, A double quantum-dot circuit

[18]. The physical positions of the dots for (n1, n2) electrons between source and drain are indicated

by white circles. A quantum point contact (QPC) reads the charge state on the dots. b, A time

trace of the QPC conductance indicating whether there is an electron on the left (L) or right (R)

dot, or if both dots are empty (0). Histograms of the net number n of charges that have passed

from source to drain c, at zero chemical potential difference and d, at finite bias. The experiment

is performed at T = 330 mK.

limit (in the sense of many realizations of the experiment). The counterpart of eq. (1) for

dissipated work in reversed protocols is called the Crooks relation [23].

The practical importance of the Jarzynski equality is considered to be its ability to

extract equilibrium properties of the system (∆F ) from non-equilibrium measurements. This

quality has been harnessed in experiments on molecules and soft matter [2]. By contrast,

the equilibrium properties of basic electronic circuits can generally be determined by other

means and so the Jarzynski equality and the Crooks relation are superfluous to large extent,

as the relevant Hamiltonian including the coupling to the bath is typically known with high

accuracy.

As a basic example, we consider a single-electron box (SEB) [24–27], which is somewhat

related to the quantum-dot circuit discussed above. However, here we focus on a metallic

system, where the only energy relevant for the system Hamiltonian is the Coulomb energy,

and ‘particle-in-box’ quantum effects can be fully ignored. We are thus dealing with a
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system that is typically composed of about 109 free electrons. But due to the single-electron

capacitive charging energy, the precise number of electrons in each conductor at a sufficiently

low temperature is fixed at two possible values, say n = 0 and n = 1. In the SEB drawn

in Fig. 3, the total number of electrons on the two islands to the left and right of the

tunnel junction in the middle (illustrated as a divided rectangle) is furthermore strictly

constant, due to the fact that each island is connected to the leads only with capacitors.

The Hamiltonian of the box reads simply

H = EC(n− ng)2. (4)

Here EC = e2/(2CΣ) is a constant for a particular box, determined by the total capacitance

CΣ of the SEB. The control parameter ng is the source of work, and is proportional to the

gate voltage Vg shown in Fig. 3.

A basic experiment on this type of system involves repeated ramps of the voltage from,

say, ng = 0 to ng = 1 [28]. The dissipation under non-equilibrium driving is associated with

tunneling events between the two islands that take place away from the energy degeneracy

ng = 1/2, that is, with non-zero ∆µ = 2EC(ng−1/2). Sweeps with the identical protocol —

at an equal rate and over this same interval — are then measured to find the corresponding

averages to test the Jarzynski equality and the Crooks relation. The entropy production and

dissipated work, which in this case are equal (when the latter is divided by the bath tem-

perature), are measured by a single-electron transistor (SET) that can detect the tunneling

events like the QPC can in the semiconductor circuits. Each tunneling event is time-tagged

to account for the instantaneous chemical potential difference, which is responsible for dis-

sipation. In this way, this experiment goes beyond basic charge counting when measuring

dissipation.

The results of this experiment satisfy the Jarzynski equality and the Crooks relation

within about 3% uncertainty. Here, and in refs [17, 18] it is worth noting that a large number

of experiments is possible — up to millions of repetitions — meaning that sufficient statistics

can be collected, unlike in typical experiments on molecules [2]. In another experiment, more

general fluctuation relations under time-dependent driving conditions were tested with the

two islands in the SEB at unequal temperatures [29]. In the case with two baths, the

Jarzynski equality fails naturally, but fluctuation relations based on trajectory entropy [30]

and thermodynamic entropy recover eqs. (1) and (2).
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FIG. 3: Experiment on the Jarzynski fluctuation relation. a, A schematic diagram of a

metallic single-electron box (SEB) [28]. The extra charge can dwell on either the left (n = 0) or the

right (n = 1) island and the transition between the two states is indicated by the blue arrow. The

current Idet of the voltage biased single-electron transistor (SET) coupled capacitively to one of the

islands of the SEB reads the charge state n. b, A time trace of the SET, where transitions between

(n = 0, lower value of Idet) and (n = 1, higher value of Idet) are monitored in time and tagged with

the driving field ng ∝ Vg. c, The distributions of dissipated work measured on the SEB at T = 200

mK at three different driving rates: 1 Hz (black), 2 Hz (red) and 4 Hz (blue). The distributions

become increasingly non-Gaussian with increasing rate. Each distribution is composed of more

than 105 repetitions of the driving protocol. The Jarzynski equality 〈e−βWd〉 = 1, Wd ≡W −∆F ,

is satisfied within 3% uncertainty for all the three distributions.

The role of information

Information-to-energy conversion, embodied by Maxwell’s demon, has recently become a

topic of increased activity in nanosystems. One of the pioneering experiments in this field

involved a micro-bead in an electric field [31]. Several proposals for nanoelectronic circuits
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have been put forward since then, see e.g. [32]. But experimentally, Maxwell’s demon was

realized in such a circuit only very recently [33, 34]. Here we briefly discuss the principle of

the demon, and the results of the experiments performed on an SEB (see Fig. 4).

The aim of the experiment is to extract heat from a bath using information gathered

by the SET detector, which senses the charge state of the SEB as in Fig. 3a. Initially,

the driving field ng is set to a value ng,0 = 1/2 − ∆ng, which is sufficiently far from the

degeneracy value ng = 1/2 of the two charge states (see eq. (4)). At ng,0, the SEB is almost

certainly in one of the two charge states, and due to the symmetry of the Hamiltonian in

eq. (4), ∆ng > 0 and n = 0 can be chosen without loss of generality. Thereafter, ng is swept

quasi-statically to ng = 1/2. At this degeneracy point, n can take the value n = 0 or n = 1

with equal probability, p(n) = 1/2. This process thus increases the entropy of the charge

system S = −kB
∑

n=0,1 p(n) ln p(n) by ∆S = kB ln 2. Because the process is quasi-static,

this entropy change is equal to the decrease of entropy in the bath, and therefore the heat

absorbed by the charge system from the electron bath is ∆Q = T∆S = kBT ln 2 in this

ramp.

One might imagine completing such a cycle in many ways: either deterministically, with-

out using the demon’s information, or conditionally, depending on the outcome of the mea-

surement — that is, by using the information. If the measurement and feedback were

missing, as in the first, deterministic case, the average dissipation in the system would have

been non-negative in repeated experiments. At best, one could move the driving field ng

quasi-statically back to the original position ng,0, and inject the same heat kBT ln 2 back

into the bath. This process as a whole would then be reversible. The returning leg from the

degeneracy point to the original position bears in this case a close relation to the Landauer

principle of minimum heat kBT ln 2 generated in the erasure of a bit [35], which was recently

demonstrated experimentally using a colloidal particle trapped in a modulated double-well

potential [36]. On the other hand, one could move ng quickly back to the original position.

Then, if lucky, the system would be in the n = 0 state at the moment of this abrupt change,

and there would be no electron transitions and no heat exchange between the charge system

and the bath. ‘Lucky’ here implies that the system happened to be in state n = 0 at the

moment of this quick change of the control parameter to ng = ng,0. In that case, one would

have cooled the bath by kBT ln 2 even after completing this closed cycle. But by gambling

without knowing the actual value of n before the quick ramp, one is lucky only 50% of the
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time. And in the case that the system happened to be in the opposite state, n = 1, initially,

it would make the n : 1 → 0 transition at ng = ng,0 after the abrupt change, dissipating

heat 2EC∆ng, according to eq. (4). This heat is much larger than kBT according to our

initial premise that n = 1 state was very unlikely in equilibrium at this value of the driving

field. Thus repeating such a cycle many times, one would inevitably inject heat to the bath.

Due to symmetry, the results above do not depend whether one moves to ng = ng,0 or to

ng = 1− ng,0 from the degeneracy point.

But it is precisely here that our demon comes to the rescue, in the second, conditional

route for completing the cycle. Instead of deterministically jumping ng : 1/2→ ng,0 in each

cycle, the demon measures the charge state at degeneracy and, based on the outcome of this

measurement, the driving field is moved to ng,0 if n = 0, or to its symmetric point 1− ng,0
if n = 1. In both cases, one would successfully extract kBT ln 2 in the whole cycle, if the

measurement and feedback are error free. Being at ng = ng,0 or ng = 1 − ng,0, one then

starts another quasi-static ramp towards the degeneracy point, which makes the process

cyclic and extracts ideally kBT ln 2 heat from the bath in each round. This heat ends up in

the detector circuit.

Figure 4b presents a typical outcome of a measurement, similar to those obtained in ref.

[33]. It is the histogram of heat dissipated into the bath in about 3000 cycles. This histogram

can be split into two main components: those cycles in which the demon has been successful,

and the heat is Q ≈ −kBT ln 2, and those in which the demon makes a mistake, and the heat

dissipated is about +2EC∆ng. As long as the latter type of cycle is sufficiently rare, as in

Fig. 4b, the average heat dissipated to the bath, Qave, is negative — the demon effectively

cools the bath. For the measurement in Fig. 4b, we obtain Qave ≈ −0.75kBT ln 2, such that

the fidelity of the demon is about 75%. The measurement thus represents a refrigerator of

an electron gas, powered by information.

The repetition frequency of the cycle is currently far too slow to achieve observable

cooling of the electron system in terms of a measurable temperature drop. In ref. [34],

the influence of measurement errors of the demon were considered using the concept of

mutual information I. The measurement on an SEB demonstrated that under the feedback

conditions the histograms of the type shown in Fig. 4b are governed by the Sagawa-Ueda

equality, which reads 〈e−β(W−∆F )−I〉 = 1 [37].
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FIG. 4: Experimental implementation of Maxwell’s demon. a, The principle and the

protocol of the experiment on a single-electron box [33]. Initially, the two-level (in this case,

classical) system is positioned such that the system is in one of the charge states. The control

parameter ng is then ramped quasi-statically to the degeneracy point, indicated by a change in the

energy levels, from being largely unequal to fully equal. This leads to heat transport of kBT ln 2

from the bath to the two-level system. Based on the outcome of the measurement by the Maxwell’s

demon of the state of the system [case (ii) in the text], the control parameter is quickly moved

to one of the definite charge states. After that, the cycle repeats. b, The distribution of heat

deposited in the bath, Q, based on about 3000 cycles. The average heat extracted, 〈−Q〉, is about

75% of kBT ln 2. c, Illustration of how the histogram in (b) splits into two peaks. The two sections

of parabolas in each case correspond to the positions of the energy levels in (a). When ng is moved

quickly from 1/2 to 1/2 −∆ng, the state of the system can be n = 0 (success) or n = 1 (failure,

with dissipation). Successful and unsuccessful fast ramps are also indicated on the right-hand side

of (a) by the horizontal blue and thin crossing red arrows, respectively.
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OPEN QUESTIONS AND FUTURE DIRECTIONS

In most of the examples presented so far, quantum coherence effects do not play a role:

the circuits operate essentially in the classical regime, apart from making use of quantum

phenomena such as superconductivity and transport by tunneling. It is often noted that the

real challenge is to describe the dissipation in true quantum systems [38–41]. One way of

putting it is that work is not an operator but instead a quantity that depends on a particular

trajectory. The only ‘simple’ case is a closed quantum system that evolves in a unitary way

[38, 39]. Thus, if one could ‘measure the whole Universe’, then work could be determined as

well. This is naturally not possible. Yet, in superconducting quantum circuits, for example

in qubits, it is possible to describe the system and its environment in a controlled way

[42, 43]. If one could then measure the system (qubit) and its environment, it would be at

least a partial solution to the problem.

Suppose an on-chip resistive element is coupled to the superconducting quantum circuit

in such a way that the energy relaxation of the system is taking place largely by photon

exchange with this absorber [44]. A sensitive thermometer, currently being developed in

several laboratories [45–47], could then detect the temperature variations of the absorber

that has minimal heat capacity. First estimates show that the present realizations are only

about one order of magnitude away from single photon resolution [47]. Such a measurement

would be a major step forward, as the experiments described so far, apart from the measure-

ments of average heat current [7–9, 11], rely on charge counting, rather than detecting the

heat input directly. An alternative scheme might involve interferometric detection [48, 49],

which could be applicable in circuit QED experiments [50].

Where do we go from here? At this time, non-equilibrium fluctuation relations have

not yet been probed in open quantum systems. Issues of incomplete measurements, non-

Markovian systems and detector back-action in relation to fluctuation relations would be

similarly interesting directions to take — and they can probably all be directly probed in

superconducting or semiconducting circuits. A Brownian refrigerator, directly powered by

thermal noise is also an interesting concept yet to be demonstrated in experiment [51, 52].

Another relevant question is naturally: what is it all good for? Aside from purely sat-

isfying our curiosity, studies of (quantum) non-equilibrium relations may prove useful in

designing refrigerators and heat engines in which the role of fluctuations cannot be ignored.
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They may also help us to identify optimal driving schemes for maximizing work extraction or

minimizing heat production in these devices [1]. Furthermore, Maxwell’s demon, although

currently providing a very tiny power output, may in future decrease dissipation locally with

the help of feedback.
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