66 research outputs found

    Retinoblastoma

    Get PDF
    Retinoblastoma is a rare eye tumor of childhood that arises in the retina. It is the most common intraocular malignancy of infancy and childhood; with an incidence of 1/15,000–20,000 live births. The two most frequent symptoms revealing retinoblastoma are leukocoria and strabismus. Iris rubeosis, hypopyon, hyphema, buphthalmia, orbital cellulites and exophthalmia may also be observed. Sixty per cent of retinoblastomas are unilateral and most of these forms are not hereditary (median age at diagnosis two years). Retinoblastoma is bilateral in 40% of cases (median age at diagnosis one year). All bilateral and multifocal unilateral forms are hereditary. Hereditary retinoblastoma constitutes a cancer predisposition syndrome: a subject constitutionally carrying an RB1 gene mutation has a greater than 90% risk of developing retinoblastoma but is also at increased risk of developing other types of cancers. Diagnosis is made by fundoscopy. Ultrasound, magnetic resonance imaging (MRI) and computed tomography (CT) scans may contribute to diagnosis. Management of patients with retinoblastoma must take into account the various aspects of the disease: the visual risk, the possibly hereditary nature of the disease, the life-threatening risk. Enucleation is still often necessary in unilateral disease; the decision for adjuvant treatment is taken according to the histological risk factors. Conservative treatment for at least one eye is possible in most of the bilateral cases. It includes laser alone or combined with chemotherapy, cryotherapy and brachytherapy. The indication for external beam radiotherapy should be restricted to large ocular tumors and diffuse vitreous seeding because of the risk of late effects, including secondary sarcoma. Vital prognosis, related to retinoblastoma alone, is now excellent in patients with unilateral or bilateral forms of retinoblastoma. Long term follow-up and early counseling regarding the risk of second primary tumors and transmission should be offered to retinoblastoma patients

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes

    Get PDF
    publisher: Elsevier articletitle: Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes journaltitle: Cell articlelink: https://doi.org/10.1016/j.cell.2018.05.046 content_type: article copyright: © 2018 Elsevier Inc

    Personal Papers (MS 80-0002)

    No full text
    Letter from Marion J. Levy, Jr. to Harris L. Kempner discussing Julian Hohenberg's records and the information given by Harris

    Personal Papers (MS 80-0002)

    No full text
    Letter from Marion J. Levy, Jr. to Harris L. Kempner thanking him for a previous letter and discussing communications with people in Brussels and Amsterdam

    Personal Papers (MS 80-0002)

    No full text
    Letter from Marion J. Levy, Jr. to Harris Leon Kempner asking for advice about the potential upcoming merger between the Galveston Corporation and the Cotton Concentration Company

    Personal Papers (MS 80-0002)

    No full text
    Letter from Marion J. Levy, Jr. to Mr. Harris Kempner discussing the details of Julien Jefferson Hohenberg and his reasons for attending the Woodrow Wilson School and connections to the cotton industry
    corecore