224 research outputs found

    Experiments on reinforced brick masonry vaulted light roofs

    Get PDF
    This paper describes structural tests of thin vaults made of reinforced brick masonry. The experiments consist of concentrated loading tests of 14 full-scale laboratory vaults. These vaults are designed to include common situations such as short- to midspan length, low-mid-high rise, rigid-flexible-sliding supports, instantaneous-sustained loading, low-high strength mortar, point-line loading, central-eccentric loading, point-line supports, hinged-clamped supports, symmetric-asymmetric shape, double layer versus single layer reinforcement, and uniaxial-biaxial bending, among others. The tests mainly aim to obtain the collapse loads and to characterize the pre- and post-peak response. The results show satisfactory structural performance, both in terms of ductility and strength. Moreover, it is possible to predict the structural response with numerical models developed specifically for this purpose. Flat specimens were also tested to determine the punching shear strength of the vaults. This work is part of a larger research project aimed at promoting innovative semi-prefabrication techniques for reinforced brick masonry vaulted light roofs

    Slaughterhouse blood as a perfusate for studying myocardial function under ischemic conditions

    Get PDF
    Abstract Metabolic studies using the in vitro non-recirculating blood-perfused isolated heart model require large volumes of blood. The present study was designed to determine whether heterologous pig blood collected from a slaughterhouse can be used as perfusate for isolated pig hearts perfused under aerobic and constant reduced flow conditions. Eight isolated working pig hearts perfused for 90 min at a constant flow of 1.5 ml g -1 min -1 with non-recirculated blood diluted with KrebsHenseleit bicarbonate buffer at a hematocrit of 23% were compared to eight hearts subjected to the same protocol but perfused only with Krebs-Henseleit bicarbonate buffer solution. Hearts were paced at 100 bpm and subjected to aerobic perfusion at 38ºC. Hearts were weighed before perfusion and at the end of the experiment and the results are reported as percent weight gain (mean ± SD). Comparisons between groups were performed by the Student t-test (P<0.05). After 90 min of perfusion with modified Krebs-Henseleit, perfused hearts presented a larger weight gain than blood-perfused hearts (39.34 ± 9.27 vs 23.13 ± 5.42%, P = 0.003). Left ventricular end-diastolic pressure was higher in the modified Krebs-Henseleit-perfused group than in the blood group (2.8 ± 0.4 vs 2.3 ± 0.3 mmHg, respectively, P = 0.01). We conclude that heterologous blood perfusion, by preserving a more physiological myocardial water content, is a better perfusion fluid than modified Krebs-Henseleit solution for quantitative studies of myocardial metabolism and heart function under ischemic conditions

    Conceptual design of the early implementation of the NEutron Detector Array (NEDA) with AGATA

    Get PDF
    The NEutron Detector Array (NEDA) project aims at the construction of a new high-efficiency compact neutron detector array to be coupled with large (Formula presented.) -ray arrays such as AGATA. The application of NEDA ranges from its use as selective neutron multiplicity filter for fusion-evaporation reaction to a large solid angle neutron tagging device. In the present work, possible configurations for the NEDA coupled with the Neutron Wall for the early implementation with AGATA has been simulated, using Monte Carlo techniques, in order to evaluate their performance figures. The goal of this early NEDA implementation is to improve, with respect to previous instruments, efficiency and capability to select multiplicity for fusion-evaporation reaction channels in which 1, 2 or 3 neutrons are emitted. Each NEDA detector unit has the shape of a regular hexagonal prism with a volume of about 3.23l and it is filled with the EJ301 liquid scintillator, that presents good neutron- (Formula presented.) discrimination properties. The simulations have been performed using a fusion-evaporation event generator that has been validated with a set of experimental data obtained in the 58Ni + 56Fe reaction measured with the Neutron Wall detector array

    Transcriptional Activation of Low-Density Lipoprotein Receptor Gene by DJ-1 and Effect of DJ-1 on Cholesterol Homeostasis

    Get PDF
    DJ-1 is a novel oncogene and also causative gene for familial Parkinson’s disease park7. DJ-1 has multiple functions that include transcriptional regulation, anti-oxidative reaction and chaperone and mitochondrial regulation. For transcriptional regulation, DJ-1 acts as a coactivator that binds to various transcription factors, resulting in stimulation or repression of the expression of their target genes. In this study, we found the low-density lipoprotein receptor (LDLR) gene is a transcriptional target gene for DJ-1. Reduced expression of LDLR mRNA and protein was observed in DJ-1-knockdown cells and DJ-1-knockout mice and this occurred at the transcription level. Reporter gene assays using various deletion and point mutations of the LDLR promoter showed that DJ-1 stimulated promoter activity by binding to the sterol regulatory element (SRE) with sterol regulatory element binding protein (SREBP) and that stimulating activity of DJ-1 toward LDLR promoter activity was enhanced by oxidation of DJ-1. Chromatin immunoprecipitation, gel-mobility shift and co-immunoprecipitation assays showed that DJ-1 made a complex with SREBP on the SRE. Furthermore, it was found that serum LDL cholesterol level was increased in DJ-1-knockout male, but not female, mice and that the increased serum LDL cholesterol level in DJ-1-knockout male mice was cancelled by administration with estrogen, suggesting that estrogen compensates the increased level of serum LDL cholesterol in DJ-1-knockout female mice. This is the first report that DJ-1 participates in metabolism of fatty acid synthesis through transcriptional regulation of the LDLR gene

    The nonperturbative functional renormalization group and its applications

    Full text link
    The renormalization group plays an essential role in many areas of physics, both conceptually and as a practical tool to determine the long-distance low-energy properties of many systems on the one hand and on the other hand search for viable ultraviolet completions in fundamental physics. It provides us with a natural framework to study theoretical models where degrees of freedom are correlated over long distances and that may exhibit very distinct behavior on different energy scales. The nonperturbative functional renormalization-group (FRG) approach is a modern implementation of Wilson's RG, which allows one to set up nonperturbative approximation schemes that go beyond the standard perturbative RG approaches. The FRG is based on an exact functional flow equation of a coarse-grained effective action (or Gibbs free energy in the language of statistical mechanics). We review the main approximation schemes that are commonly used to solve this flow equation and discuss applications in equilibrium and out-of-equilibrium statistical physics, quantum many-particle systems, high-energy physics and quantum gravity.Comment: v2) Review article, 93 pages + bibliography, 35 figure

    A Plant DJ-1 Homolog Is Essential for Arabidopsis thaliana Chloroplast Development

    Get PDF
    Protein superfamilies can exhibit considerable diversification of function among their members in various organisms. The DJ-1 superfamily is composed of proteins that are principally involved in stress response and are widely distributed in all kingdoms of life. The model flowering plant Arabidopsis thaliana contains three close homologs of animal DJ-1, all of which are tandem duplications of the DJ-1 domain. Consequently, the plant DJ-1 homologs are likely pseudo-dimeric proteins composed of a single polypeptide chain. We report that one A. thaliana DJ-1 homolog (AtDJ1C) is the first DJ-1 homolog in any organism that is required for viability. Homozygous disruption of the AtDJ1C gene results in non-viable, albino seedlings that can be complemented by expression of wild-type or epitope-tagged AtDJ1C. The plastids from these dj1c plants lack thylakoid membranes and granal stacks, indicating that AtDJ1C is required for proper chloroplast development. AtDJ1C is expressed early in leaf development when chloroplasts mature, but is downregulated in older tissue, consistent with a proposed role in plastid development. In addition to its plant-specific function, AtDJ1C is an atypical member of the DJ-1 superfamily that lacks a conserved cysteine residue that is required for the functions of most other superfamily members. The essential role for AtDJ1C in chloroplast maturation expands the known functional diversity of the DJ-1 superfamily and provides the first evidence of a role for specialized DJ-1-like proteins in eukaryotic development

    Stem rust resistance in wheat is suppressed by a subunit of the mediator complex

    Get PDF
    Stem rust is an important disease of wheat that can be controlled using resistance genes. The gene SuSr-D1 identified in cultivar 'Canthatch' suppresses stem rust resistance. SuSr-D1 mutants are resistant to several races of stem rust that are virulent on wild-type plants. Here we identify SuSr-D1 by sequencing flow-sorted chromosomes, mutagenesis, and map-based cloning. The gene encodes Med15, a subunit of the Mediator Complex, a conserved protein complex in eukaryotes that regulates expression of protein-coding genes. Nonsense mutations in Med15b.D result in expression of stem rust resistance. Time-course RNAseq analysis show a significant reduction or complete loss of differential gene expression at 24h post inoculation in med15b.D mutants, suggesting that transcriptional reprogramming at this time point is not required for immunity to stem rust. Suppression is a common phenomenon and this study provides novel insight into suppression of rust resistance in wheat. Stem rust is an important disease of wheat and resistance present in some cultivars can be suppressed by the SuSr-D1 locus. Here the authors show that SuSr-D1 encodes a subunit of the Mediator Complex and that nonsense mutations are sufficient to abolish suppression and confer stem rust resistance

    Role of Lipids in Spheroidal High Density Lipoproteins

    Get PDF
    We study the structure and dynamics of spherical high density lipoprotein (HDL) particles through coarse-grained multi-microsecond molecular dynamics simulations. We simulate both a lipid droplet without the apolipoprotein A-I (apoA-I) and the full HDL particle including two apoA-I molecules surrounding the lipid compartment. The present models are the first ones among computational studies where the size and lipid composition of HDL are realistic, corresponding to human serum HDL. We focus on the role of lipids in HDL structure and dynamics. Particular attention is paid to the assembly of lipids and the influence of lipid-protein interactions on HDL properties. We find that the properties of lipids depend significantly on their location in the particle (core, intermediate region, surface). Unlike the hydrophobic core, the intermediate and surface regions are characterized by prominent conformational lipid order. Yet, not only the conformations but also the dynamics of lipids are found to be distinctly different in the different regions of HDL, highlighting the importance of dynamics in considering the functionalization of HDL. The structure of the lipid droplet close to the HDL-water interface is altered by the presence of apoA-Is, with most prominent changes being observed for cholesterol and polar lipids. For cholesterol, slow trafficking between the surface layer and the regimes underneath is observed. The lipid-protein interactions are strongest for cholesterol, in particular its interaction with hydrophobic residues of apoA-I. Our results reveal that not only hydrophobicity but also conformational entropy of the molecules are the driving forces in the formation of HDL structure. The results provide the first detailed structural model for HDL and its dynamics with and without apoA-I, and indicate how the interplay and competition between entropy and detailed interactions may be used in nanoparticle and drug design through self-assembly

    An allele of Arabidopsis COI1 with hypo- and hypermorphic phenotypes in plant growth, defence and fertility

    Get PDF
    Resistance to biotrophic pathogens is largely dependent on the hormone salicylic acid (SA) while jasmonic acid (JA) regulates resistance against necrotrophs. JA negatively regulates SA and is, in itself, negatively regulated by SA. A key component of the JA signal transduction pathway is its receptor, the COI1 gene. Mutations in this gene can affect all the JA phenotypes, whereas mutations in other genes, either in JA signal transduction or in JA biosynthesis, lack this general effect. To identify components of the part of the resistance against biotrophs independent of SA, a mutagenised population of NahG plants (severely depleted of SA) was screened for suppression of susceptibility. The screen resulted in the identification of intragenic and extragenic suppressors, and the results presented here correspond to the characterization of one extragenic suppressor, coi1-40. coi1-40 is quite different from previously described coi1 alleles, and it represents a strategy for enhancing resistance to biotrophs with low levels of SA, likely suppressing NahG by increasing the perception to the remaining SA. The phenotypes of coi1-40 lead us to speculate about a modular function for COI1, since we have recovered a mutation in COI1 which has a number of JA-related phenotypes reduced while others are equal to or above wild type levels.This work was supported by grant BIO201018896 from "Ministerio de Economia y Competitividad" (MINECO) of Spain and by grant ACOMP/2012/105 from "Generalitat Valenciana" to PT, a JAE-CSIC Fellowship to JVC, a FPI-MINECO to AD, and Fellowships from the European Molecular Biology Organization and the Human Frontier Science Program to BBHW. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Dobón Alonso, A.; Wulff, BBH.; Canet Perez, JV.; Fort Rausell, P.; Tornero Feliciano, P. (2013). An allele of Arabidopsis COI1 with hypo- and hypermorphic phenotypes in plant growth, defence and fertility. PLoS ONE. 1(8):55115-55115. https://doi.org/10.1371/journal.pone.0055115S551155511518Vlot, A. C., Dempsey, D. A., & Klessig, D. F. (2009). Salicylic Acid, a Multifaceted Hormone to Combat Disease. Annual Review of Phytopathology, 47(1), 177-206. doi:10.1146/annurev.phyto.050908.135202Mauch, F., Mauch-Mani, B., Gaille, C., Kull, B., Haas, D., & Reimmann, C. (2001). Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. The Plant Journal, 25(1), 67-77. doi:10.1046/j.1365-313x.2001.00940.xGaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., … Ryals, J. (1993). Requirement of Salicylic Acid for the Induction of Systemic Acquired Resistance. Science, 261(5122), 754-756. doi:10.1126/science.261.5122.754Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., … Ryals, J. (1994). A Central Role of Salicylic Acid in Plant Disease Resistance. Science, 266(5188), 1247-1250. doi:10.1126/science.266.5188.1247Lawton, K. (1995). Systemic Acquired Resistance inArabidopsisRequires Salicylic Acid but Not Ethylene. Molecular Plant-Microbe Interactions, 8(6), 863. doi:10.1094/mpmi-8-0863Ross, A. F. (1961). Systemic acquired resistance induced by localized virus infections in plants. Virology, 14(3), 340-358. doi:10.1016/0042-6822(61)90319-1Pieterse, C. M. ., & van Loon, L. C. (1999). Salicylic acid-independent plant defence pathways. Trends in Plant Science, 4(2), 52-58. doi:10.1016/s1360-1385(98)01364-8Fonseca, S., Chico, J. M., & Solano, R. (2009). The jasmonate pathway: the ligand, the receptor and the core signalling module. Current Opinion in Plant Biology, 12(5), 539-547. doi:10.1016/j.pbi.2009.07.013Ton, J., De Vos, M., Robben, C., Buchala, A., Métraux, J.-P., Van Loon, L. C., & Pieterse, C. M. J. (2002). Characterization ofArabidopsisenhanced disease susceptibility mutants that are affected in systemically induced resistance. The Plant Journal, 29(1), 11-21. doi:10.1046/j.1365-313x.2002.01190.xCui, J., Bahrami, A. K., Pringle, E. G., Hernandez-Guzman, G., Bender, C. L., Pierce, N. E., & Ausubel, F. M. (2005). Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proceedings of the National Academy of Sciences, 102(5), 1791-1796. doi:10.1073/pnas.0409450102Robert-Seilaniantz, A., Navarro, L., Bari, R., & Jones, J. D. (2007). Pathological hormone imbalances. Current Opinion in Plant Biology, 10(4), 372-379. doi:10.1016/j.pbi.2007.06.003Garcion, C., Lohmann, A., Lamodière, E., Catinot, J., Buchala, A., Doermann, P., & Métraux, J.-P. (2008). Characterization and Biological Function of the ISOCHORISMATE SYNTHASE2 Gene of Arabidopsis. Plant Physiology, 147(3), 1279-1287. doi:10.1104/pp.108.119420Tornero, P., Chao, R. A., Luthin, W. N., Goff, S. A., & Dangl, J. L. (2002). Large-Scale Structure –Function Analysis of the Arabidopsis RPM1 Disease Resistance Protein. The Plant Cell, 14(2), 435-450. doi:10.1105/tpc.010393Bowling, S. A., Guo, A., Cao, H., Gordon, A. S., Klessig, D. F., & Dong, X. (1994). A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. The Plant Cell, 6(12), 1845-1857. doi:10.1105/tpc.6.12.1845Bowling, S. A., Clarke, J. D., Liu, Y., Klessig, D. F., & Dong, X. (1997). The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. The Plant Cell, 9(9), 1573-1584. doi:10.1105/tpc.9.9.1573Yu, I. -c., Parker, J., & Bent, A. F. (1998). Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proceedings of the National Academy of Sciences, 95(13), 7819-7824. doi:10.1073/pnas.95.13.7819Dietrich, R. A., Delaney, T. P., Uknes, S. J., Ward, E. R., Ryals, J. A., & Dangl, J. L. (1994). Arabidopsis mutants simulating disease resistance response. Cell, 77(4), 565-577. doi:10.1016/0092-8674(94)90218-6Rivas-San Vicente, M., & Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 62(10), 3321-3338. doi:10.1093/jxb/err031Wang, D. (2005). Induction of Protein Secretory Pathway Is Required for Systemic Acquired Resistance. Science, 308(5724), 1036-1040. doi:10.1126/science.1108791Ritter, C. (1995). TheavrRpm1Gene ofPseudomonas syringaepv.maculicolaIs Required for Virulence on Arabidopsis. Molecular Plant-Microbe Interactions, 8(3), 444. doi:10.1094/mpmi-8-0444Debener, T., Lehnackers, H., Arnold, M., & Dangl, J. L. (1991). Identification and molecular mapping of a single Arabidopsis thaliana locus determining resistance to a phytopathogenic Pseudomonas syringae isolate. The Plant Journal, 1(3), 289-302. doi:10.1046/j.1365-313x.1991.t01-7-00999.xGrant, M., Godiard, L., Straube, E., Ashfield, T., Lewald, J., Sattler, A., … Dangl, J. (1995). Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science, 269(5225), 843-846. doi:10.1126/science.7638602Mindrinos, M., Katagiri, F., Yu, G.-L., & Ausubel, F. M. (1994). The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell, 78(6), 1089-1099. doi:10.1016/0092-8674(94)90282-8Coego, A., Ramirez, V., Gil, M. J., Flors, V., Mauch-Mani, B., & Vera, P. (2005). An Arabidopsis Homeodomain Transcription Factor, OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, Mediates Resistance to Infection by Necrotrophic Pathogens. The Plant Cell, 17(7), 2123-2137. doi:10.1105/tpc.105.032375Pieterse, C. M. J., van Wees, S. C. M., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., … van Loon, L. C. (1998). A Novel Signaling Pathway Controlling Induced Systemic Resistance in Arabidopsis. The Plant Cell, 10(9), 1571-1580. doi:10.1105/tpc.10.9.1571Berger, S., Bell, E., & Mullet, J. E. (1996). Two Methyl Jasmonate-Insensitive Mutants Show Altered Expression of AtVsp in Response to Methyl Jasmonate and Wounding. Plant Physiology, 111(2), 525-531. doi:10.1104/pp.111.2.525Attaran, E., Zeier, T. E., Griebel, T., & Zeier, J. (2009). Methyl Salicylate Production and Jasmonate Signaling Are Not Essential for Systemic Acquired Resistance in Arabidopsis. The Plant Cell, 21(3), 954-971. doi:10.1105/tpc.108.063164Yan, J., Zhang, C., Gu, M., Bai, Z., Zhang, W., Qi, T., … Xie, D. (2009). The Arabidopsis CORONATINE INSENSITIVE1 Protein Is a Jasmonate Receptor. The Plant Cell, 21(8), 2220-2236. doi:10.1105/tpc.109.065730Mittal, S. (1995). Role of the Phytotoxin Coronatine in the Infection ofAmbidopsis thalianabyPseudomonas syringaepv.tomato. Molecular Plant-Microbe Interactions, 8(1), 165. doi:10.1094/mpmi-8-0165Genoud, T., & Métraux, J.-P. (1999). Crosstalk in plant cell signaling: structure and function of the genetic network. Trends in Plant Science, 4(12), 503-507. doi:10.1016/s1360-1385(99)01498-3Lawton, K. A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., … Ryals, J. (1996). Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. The Plant Journal, 10(1), 71-82. doi:10.1046/j.1365-313x.1996.10010071.xFeys, B., Benedetti, C. E., Penfold, C. N., & Turner, J. G. (1994). Arabidopsis Mutants Selected for Resistance to the Phytotoxin Coronatine Are Male Sterile, Insensitive to Methyl Jasmonate, and Resistant to a Bacterial Pathogen. The Plant Cell, 751-759. doi:10.1105/tpc.6.5.751Sun, J., Xu, Y., Ye, S., Jiang, H., Chen, Q., Liu, F., … Li, C. (2009). Arabidopsis ASA1 Is Important for Jasmonate-Mediated Regulation of Auxin Biosynthesis and Transport during Lateral Root Formation. The Plant Cell, 21(5), 1495-1511. doi:10.1105/tpc.108.064303He, Y., Fukushige, H., Hildebrand, D. F., & Gan, S. (2002). Evidence Supporting a Role of Jasmonic Acid in Arabidopsis Leaf Senescence. Plant Physiology, 128(3), 876-884. doi:10.1104/pp.010843Shan, X., Zhang, Y., Peng, W., Wang, Z., & Xie, D. (2009). Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. Journal of Experimental Botany, 60(13), 3849-3860. doi:10.1093/jxb/erp223Yoshida, Y., Sano, R., Wada, T., Takabayashi, J., & Okada, K. (2009). Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in Arabidopsis. Development, 136(6), 1039-1048. doi:10.1242/dev.030585Borevitz, J. O., Xia, Y., Blount, J., Dixon, R. A., & Lamb, C. (2000). Activation Tagging Identifies a Conserved MYB Regulator of Phenylpropanoid Biosynthesis. The Plant Cell, 12(12), 2383-2393. doi:10.1105/tpc.12.12.2383Berger, S., Bell, E., Sadka, A., & Mullet, J. E. (1995). Arabidopsis thaliana Atvsp is homologous to soybean VspA and VspB, genes encoding vegetative storage protein acid phosphatases, and is regulated similarly by methyl jasmonate, wounding, sugars, light and phosphate. Plant Molecular Biology, 27(5), 933-942. doi:10.1007/bf00037021Feng, S., Ma, L., Wang, X., Xie, D., Dinesh-Kumar, S. P., Wei, N., & Deng, X. W. (2003). The COP9 Signalosome Interacts Physically with SCFCOI1 and Modulates Jasmonate Responses. The Plant Cell, 15(5), 1083-1094. doi:10.1105/tpc.010207Nawrath C, Métraux JP, Genoud T (2005) Chemical signals in plant resistance: salicylic acid. . In: Tuzun S, Bent E, editors. Multigenic and Induced Systemic Resistance in Plants. Dordrecht, Netherlands.: Springer US. pp. pp. 143–165.Kunkel, B. N., & Brooks, D. M. (2002). Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology, 5(4), 325-331. doi:10.1016/s1369-5266(02)00275-3Truman, W., Bennett, M. H., Kubigsteltig, I., Turnbull, C., & Grant, M. (2007). Arabidopsissystemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proceedings of the National Academy of Sciences, 104(3), 1075-1080. doi:10.1073/pnas.0605423104Canet, J. V., Dobón, A., Ibáñez, F., Perales, L., & Tornero, P. (2010). Resistance and biomass in Arabidopsis: a new model for Salicylic Acid perception. Plant Biotechnology Journal, 8(2), 126-141. doi:10.1111/j.1467-7652.2009.00468.xCasimiro, I., Marchant, A., Bhalerao, R. P., Beeckman, T., Dhooge, S., Swarup, R., … Bennett, M. (2001). Auxin Transport Promotes Arabidopsis Lateral Root Initiation. The Plant Cell, 13(4), 843-852. doi:10.1105/tpc.13.4.843Celenza, J. L., Grisafi, P. L., & Fink, G. R. (1995). A pathway for lateral root formation in Arabidopsis thaliana. Genes & Development, 9(17), 2131-2142. doi:10.1101/gad.9.17.2131Traw, M. B., & Bergelson, J. (2003). Interactive Effects of Jasmonic Acid, Salicylic Acid, and Gibberellin on Induction of Trichomes in Arabidopsis. Plant Physiology, 133(3), 1367-1375. doi:10.1104/pp.103.027086Kloek, A. P., Verbsky, M. L., Sharma, S. B., Schoelz, J. E., Vogel, J., Klessig, D. F., & Kunkel, B. N. (2001). Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. The Plant Journal, 26(5), 509-522. doi:10.1046/j.1365-313x.2001.01050.xXie, D. (1998). COI1: An Arabidopsis Gene Required for Jasmonate-Regulated Defense and Fertility. Science, 280(5366), 1091-1094. doi:10.1126/science.280.5366.1091Ellis, C., & Turner, J. (2002). A conditionally fertile coi1 allele indicates cross-talk between plant hormone signalling pathways in Arabidopsis thaliana seeds and young seedlings. Planta, 215(4), 549-556. doi:10.1007/s00425-002-0787-4Fernández-Arbaizar, A., Regalado, J. J., & Lorenzo, O. (2011). Isolation and Characterization of Novel Mutant Loci Suppressing the ABA Hypersensitivity of the Arabidopsis coronatine insensitive 1-16 (coi1-16) Mutant During Germination and Seedling Growth. Plant and Cell Physiology, 53(1), 53-63. doi:10.1093/pcp/pcr174He, Y., Chung, E.-H., Hubert, D. A., Tornero, P., & Dangl, J. L. (2012). Specific Missense Alleles of the Arabidopsis Jasmonic Acid Co-Receptor COI1 Regulate Innate Immune Receptor Accumulation and Function. PLoS Genetics, 8(10), e1003018. doi:10.1371/journal.pgen.1003018Xu, L., Liu, F., Lechner, E., Genschik, P., Crosby, W. L., Ma, H., … Xie, D. (2002). The SCFCOI1 Ubiquitin-Ligase Complexes Are Required for Jasmonate Response in Arabidopsis. The Plant Cell, 14(8), 1919-1935. doi:10.1105/tpc.003368Chini, A., Fonseca, S., Fernández, G., Adie, B., Chico, J. M., Lorenzo, O., … Solano, R. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 448(7154), 666-671. doi:10.1038/nature06006Grunewald, W., Vanholme, B., Pauwels, L., Plovie, E., Inzé, D., Gheysen, G., & Goossens, A. (2009). Expression of the Arabidopsis jasmonate signalling repressor JAZ1/TIFY10A is stimulated by auxin. EMBO reports, 10(8), 923-928. doi:10.1038/embor.2009.103Cao, H., Glazebrook, J., Clarke, J. D., Volko, S., & Dong, X. (1997). The Arabidopsis NPR1 Gene That Controls Systemic Acquired Resistance Encodes a Novel Protein Containing Ankyrin Repeats. Cell, 88(1), 57-63. doi:10.1016/s0092-8674(00)81858-9Century, K. S., Holub, E. B., & Staskawicz, B. J. (1995). NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proceedings of the National Academy of Sciences, 92(14), 6597-6601. doi:10.1073/pnas.92.14.6597Wildermuth, M. C., Dewdney, J., Wu, G., & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414(6863), 562-565. doi:10.1038/35107108Lu, M., Tang, X., & Zhou, J.-M. (2001). Arabidopsis NHO1 Is Required for General Resistance against Pseudomonas Bacteria. The Plant Cell, 13(2), 437-447. doi:10.1105/tpc.13.2.437Ritter, C., & Dangl, J. L. (1996). Interference between Two Specific Pathogen Recognition Events Mediated by Distinct Plant Disease Resistance Genes. The Plant Cell, 251-257. doi:10.1105/tpc.8.2.251Tornero, P., & Dangl, J. L. (2002). A high-throughput method for quantifying growth of phytopathogenic bacteria in Arabidopsis thaliana. The Plant Journal, 28(4), 475-481. doi:10.1046/j.1365-313x.2001.01136.xMacho, A. P., Guevara, C. M., Tornero, P., Ruiz-Albert, J., & Beuzón, C. R. (2010). The Pseudomonas syringae effector protein HopZ1a suppresses effector-triggered immunity. New Phytologist, 187(4), 1018-1033. doi:10.1111/j.1469-8137.2010.03381.xTon, J., & Mauch-Mani, B. (2004). β-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. The Plant Journal, 38(1), 119-130. doi:10.1111/j.1365-313x.2004.02028.xCANET, J. V., DOBÓN, A., ROIG, A., & TORNERO, P. (2010). Structure-function analysis of npr1 alleles in Arabidopsis reveals a role for its paralogs in the perception of salicylic acid. Plant, Cell & Environment, 33(11), 1911-1922. doi:10.1111/j.1365-3040.2010.02194.xJohnson, C. M., Stout, P. R., Broyer, T. C., & Carlton, A. B. (1957). Comparative chlorine requirements of different plant species. Plant and Soil, 8(4), 337-353. doi:10.1007/bf01666323Dobón, A., Canet, J. V., Perales, L., & Tornero, P. (2011). Quantitative genetic analysis of salicylic acid perception in Arabidopsis. Planta, 234(4), 671-684. doi:10.1007/s00425-011-1436-6Mehrtens, F., Kranz, H., Bednarek, P., & Weisshaar, B. (2005). The Arabidopsis Transcription Factor MYB12 Is a Flavonol-Specific Regulator of Phenylpropanoid Biosynthesis. Plant Physiology, 138(2), 1083-1096. doi:10.1104/pp.104.058032Konieczny, A., & Ausubel, F. M. (1993). A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. The Plant Journal, 4(2), 403-410. doi:10.1046/j.1365-313x.1993.04020403.xBell, C. J., & Ecker, J. R. (1994). Assignment of 30 Microsatellite Loci to the Linkage Map of Arabidopsis. Genomics, 19(1), 137-144. doi:10.1006/geno.1994.1023Swarbreck, D., Wilks, C., Lamesch, P., Berardini, T. Z., Garcia-Hernandez, M., Foerster, H., … Huala, E. (2007). The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Research, 36(Database), D1009-D1014. doi:10.1093/nar/gkm965Jürgens G, Mayer U, Torres Ruiz RA, Berleth T, Mísera S (1991) Genetic analysis of pattern formation in the Arabidopsis embryo. Development (Supplement 1) : 27–38.Huang, W. E., Wang, H., Zheng, H., Huang, L., Singer, A. C., Thompson, I., & Whiteley, A. S. (2005). Chromosomally located gene fusions constructed in Acinetobacter sp. ADP1 for the detection of salicylate. Environmental Microbiology, 7(9), 1339-1348. doi:10.1111/j.1462-5822.2005.00821.xDeFraia, C. T., Schmelz, E. A., & Mou, Z. (2008). A rapid biosensor-based method for quantification of free and glucose-conjugated salicylic acid. Plant Methods, 4(1), 28. doi:10.1186/1746-4811-4-28Chenna, R. (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research, 31(13), 3497-3500. doi:10.1093/nar/gkg50
    corecore