536 research outputs found

    Error estimates for extrapolations with matrix-product states

    Get PDF
    We introduce a new error measure for matrix-product states without requiring the relatively costly two-site density matrix renormalization group (2DMRG). This error measure is based on an approximation of the full variance ψ(H^E)2ψ\langle \psi | ( \hat H - E )^2 |\psi \rangle. When applied to a series of matrix-product states at different bond dimensions obtained from a single-site density matrix renormalization group (1DMRG) calculation, it allows for the extrapolation of observables towards the zero-error case representing the exact ground state of the system. The calculation of the error measure is split into a sequential part of cost equivalent to two calculations of ψH^ψ\langle \psi | \hat H | \psi \rangle and a trivially parallelized part scaling like a single operator application in 2DMRG. The reliability of the new error measure is demonstrated at four examples: the L=30,S=12L=30, S=\frac{1}{2} Heisenberg chain, the L=50L=50 Hubbard chain, an electronic model with long-range Coulomb-like interactions and the Hubbard model on a cylinder of size 10×410 \times 4. Extrapolation in the new error measure is shown to be on-par with extrapolation in the 2DMRG truncation error or the full variance ψ(H^E)2ψ\langle \psi | ( \hat H - E )^2 |\psi \rangle at a fraction of the computational effort.Comment: 10 pages, 11 figure

    Interaction quench and thermalization in a one-dimensional topological Kondo insulator

    Full text link
    We study the nonequilibrium dynamics of a one-dimensional topological Kondo insulator, modelled by a pp-wave Anderson lattice model, following a quantum quench of the on-site interaction strength. Our goal is to examine how the quench influences the topological properties of the system, therefore our main focus is the time evolution of the string order parameter, entanglement spectrum and the topologically-protected edge states. We point out that postquench local observables can be well captured by a thermal ensemble up to a certain interaction strength. Our results demonstrate that the topological properties after the interaction quench are preserved. Though the absolute value of the string order parameter decays in time, the analysis of the entanglement spectrum, Loschmidt echo and the edge states indicates the robustness of the topological properties in the time-evolved state. These predictions could be directly tested in state-of-the-art cold-atom experiments.Comment: 8.5 pages, 11 figure

    Lattice assisted spectroscopy: a generalized scanning tunnelling microscope for ultra-cold atoms

    Full text link
    We show that the possibility to address and image single sites of an optical lattice, now an experimental reality, allows to measure the frequency-resolved local particle and hole spectra of a wide variety of one- and two-dimensional systems of lattice-confined strongly correlated ultracold atoms. Combining perturbation theory and time-dependent DMRG, we validate this scheme of lattice-assisted spectroscopy (LAS) on several example systems, such as the 1D superfluid and Mott insulator, with and without a parabolic trap, and finally on edge states of the bosonic Su-Schrieffer-Heeger model. We also highlight extensions of our basic scheme to obtain an even wider variety of interesting and important frequency resolved spectra.Comment: 4 pages, 3 figure

    Generic Construction of Efficient Matrix Product Operators

    Get PDF
    Matrix Product Operators (MPOs) are at the heart of the second-generation Density Matrix Renormalisation Group (DMRG) algorithm formulated in Matrix Product State language. We first summarise the widely known facts on MPO arithmetic and representations of single-site operators. Second, we introduce three compression methods (Rescaled SVD, Deparallelisation and Delinearisation) for MPOs and show that it is possible to construct efficient representations of arbitrary operators using MPO arithmetic and compression. As examples, we construct powers of a short-ranged spin-chain Hamiltonian, a complicated Hamiltonian of a two-dimensional system and, as proof of principle, the long-range four-body Hamiltonian from quantum chemistry.Comment: 13 pages, 10 figure

    Dynamical topological quantum phase transitions in nonintegrable models

    Full text link
    We consider sudden quenches across quantum phase transitions in the S=1S=1 XXZ model starting from the Haldane phase. We demonstrate that dynamical phase transitions may occur during these quenches that are identified by nonanalyticities in the rate function for the return probability. In addition, we show that the temporal behavior of the string order parameter is intimately related to the subsequent dynamical phase transitions. We furthermore find that the dynamical quantum phase transitions can be accompanied by enhanced two-site entanglement.Comment: 5+1 pages, 4+1 figure

    Spin-charge separation in cold Fermi-gases: a real time analysis

    Full text link
    Using the adaptive time-dependent density-matrix renormalization group method for the 1D Hubbard model, the splitting of local perturbations into separate wave packets carrying charge and spin is observed in real-time. We show the robustness of this separation beyond the low-energy Luttinger liquid theory by studying the time-evolution of single particle excitations and density wave packets. A striking signature of spin-charge separation is found in 1D cold Fermi gases in a harmonic trap at the boundary between liquid and Mott-insulating phases. We give quantitative estimates for an experimental observation of spin-charge separation in an array of atomic wires

    Entanglement scaling in critical two-dimensional fermionic and bosonic systems

    Full text link
    We relate the reduced density matrices of quadratic bosonic and fermionic models to their Green's function matrices in a unified way and calculate the scaling of bipartite entanglement of finite systems in an infinite universe exactly. For critical fermionic 2D systems at T=0, two regimes of scaling are identified: generically, we find a logarithmic correction to the area law with a prefactor dependence on the chemical potential that confirms earlier predictions based on the Widom conjecture. If, however, the Fermi surface of the critical system is zero-dimensional, we find an area law with a sublogarithmic correction. For a critical bosonic 2D array of coupled oscillators at T=0, our results show that entanglement follows the area law without corrections.Comment: 4 pages, 4 figure

    Bound states and entanglement in the excited states of quantum spin chains

    Full text link
    We investigate entanglement properties of the excited states of the spin-1/2 Heisenberg (XXX) chain with isotropic antiferromagnetic interactions, by exploiting the Bethe ansatz solution of the model. We consider eigenstates obtained from both real and complex solutions ("strings") of the Bethe equations. Physically, the former are states of interacting magnons, whereas the latter contain bound states of groups of particles. We first focus on the situation with few particles in the chain. Using exact results and semiclassical arguments, we derive an upper bound S_MAX for the entanglement entropy. This exhibits an intermediate behavior between logarithmic and extensive, and it is saturated for highly-entangled states. As a function of the eigenstate energy, the entanglement entropy is organized in bands. Their number depends on the number of blocks of contiguous Bethe-Takahashi quantum numbers. In presence of bound states a significant reduction in the entanglement entropy occurs, reflecting that a group of bound particles behaves effectively as a single particle. Interestingly, the associated entanglement spectrum shows edge-related levels. At finite particle density, the semiclassical bound S_MAX becomes inaccurate. For highly-entangled states S_A\propto L_c, with L_c the chord length, signaling the crossover to extensive entanglement. Finally, we consider eigenstates containing a single pair of bound particles. No significant entanglement reduction occurs, in contrast with the few-particle case.Comment: 39 pages, 10 figure. as published in JSTAT. Invited submission to JSTAT Special Issue: Quantum Entanglement in Condensed Matter Physic
    corecore