3,556 research outputs found

    Quantum geometry and black hole entropy: inclusion of distortion and rotation

    Full text link
    Equilibrium states of black holes can be modelled by isolated horizons. If the intrinsic geometry is spherical, they are called type I while if it is axi-symmetric, they are called type II. The detailed theory of geometry of quantum type I horizons and the calculation of their entropy can be generalized to type II, thereby including arbitrary distortions and rotations. The leading term in entropy of large horizons is again given by 1/4th of the horizon area for the same value of the Barbero-Immirzi parameter as in the type I case. Ideas and constructions underlying this extension are summarized.Comment: Text based on parallel talk given at the VI Mexican School on Gravitation and Mathematical Physics: ``Approaches to Quantum Gravity'', held in Playa del Carmen, Mexico, in November of 2004; IGPG preprint number added; metadata abstract correcte

    Ashtekar Constraint Surface as Projection of Hilbert-Palatini One

    Get PDF
    The Hilbert-Palatini (HP) Lagrangian of general relativity being written in terms of selfdual and antiselfdual variables contains Ashtekar Lagrangian (which governs the dynamics of the selfdual sector of the theory on condition that the dynamics of antiselfdual sector is not fixed). We show that nonequivalence of the Ashtekar and HP quantum theories is due to the specific form (of the "loose relation" type) of constraints which relate self- and antiselfdual variables so that the procedure of (canonical) quantisation of such the theory is noncommutative with the procedure of excluding antiselfdual variables.Comment: 9 pages of LaTeX fil

    Mechanics of Rotating Isolated Horizons

    Get PDF
    Black hole mechanics was recently extended by replacing the more commonly used event horizons in stationary space-times with isolated horizons in more general space-times (which may admit radiation arbitrarily close to black holes). However, so far the detailed analysis has been restricted to non-rotating black holes (although it incorporated arbitrary distortion, as well as electromagnetic, Yang-Mills and dilatonic charges). We now fill this gap by first introducing the notion of isolated horizon angular momentum and then extending the first law to the rotating case.Comment: 31 pages REVTeX, 1 eps figure; Minor typos corrected and a footnote adde

    Self Duality and Quantization

    Get PDF
    Quantum theory of the free Maxwell field in Minkowski space is constructed using a representation in which the self dual connection is diagonal. Quantum states are now holomorphic functionals of self dual connections and a decomposition of fields into positive and negative frequency parts is unnecessary. The construction requires the introduction of new mathematical techniques involving ``holomorphic distributions''. The method extends also to linear gravitons in Minkowski space. The fact that one can recover the entire Fock space --with particles of both helicities-- from self dual connections alone provides independent support for a non-perturbative, canonical quantization program for full general relativity based on self dual variables.Comment: 14 page

    Photon inner product and the Gauss linking number

    Full text link
    It is shown that there is an interesting interplay between self-duality, loop representation and knots invariants in the quantum theory of Maxwell fields in Minkowski space-time. Specifically, in the loop representation based on self-dual connections, the measure that dictates the inner product can be expressed as the Gauss linking number of thickened loops.Comment: 18 pages, Revtex. No figures. To appear in Class. Quantum Gra

    Fock representations from U(1) holonomy algebras

    Get PDF
    We revisit the quantization of U(1) holonomy algebras using the abelian C* algebra based techniques which form the mathematical underpinnings of current efforts to construct loop quantum gravity. In particular, we clarify the role of ``smeared loops'' and of Poincare invariance in the construction of Fock representations of these algebras. This enables us to critically re-examine early pioneering efforts to construct Fock space representations of linearised gravity and free Maxwell theory from holonomy algebras through an application of the (then current) techniques of loop quantum gravity.Comment: Latex file, 30 pages, to appear in Phys Rev

    Constructing Hamiltonian quantum theories from path integrals in a diffeomorphism invariant context

    Full text link
    Osterwalder and Schrader introduced a procedure to obtain a (Lorentzian) Hamiltonian quantum theory starting from a measure on the space of (Euclidean) histories of a scalar quantum field. In this paper, we extend that construction to more general theories which do not refer to any background, space-time metric (and in which the space of histories does not admit a natural linear structure). Examples include certain gauge theories, topological field theories and relativistic gravitational theories. The treatment is self-contained in the sense that an a priori knowledge of the Osterwalder-Schrader theorem is not assumed.Comment: Plain Latex, 25 p., references added, abstract and title changed (originally :``Osterwalder Schrader Reconstruction and Diffeomorphism Invariance''), introduction extended, one appendix with illustrative model added, accepted by Class. Quantum Gra

    Non-minimal couplings, quantum geometry and black hole entropy

    Full text link
    The black hole entropy calculation for type I isolated horizons, based on loop quantum gravity, is extended to include non-minimally coupled scalar fields. Although the non-minimal coupling significantly modifies quantum geometry, the highly non-trivial consistency checks for the emergence of a coherent description of the quantum horizon continue to be met. The resulting expression of black hole entropy now depends also on the scalar field precisely in the fashion predicted by the first law in the classical theory (with the same value of the Barbero-Immirzi parameter as in the case of minimal coupling).Comment: 14 pages, no figures, revtex4. Section III expanded and typos correcte

    The weaving of curved geometries

    Get PDF
    In the physical interpretation of states in non-perturbative loop quantum gravity the so-called weave states play an important role. Until now only weaves representing flat geometries have been introduced explicitly. In this paper the construction of weaves for non-flat geometries is described; in particular, weaves representing the Schwarzschild solution are constructed.Comment: 9 pages, THU-92/2

    Combinatorial solutions to the Hamiltonian constraint in (2+1)-dimensional Ashtekar gravity

    Full text link
    Dirac's quantization of the (2+1)-dimensional analog of Ashtekar's approach to quantum gravity is investigated. After providing a diffeomorphism-invariant regularization of the Hamiltonian constraint, we find a set of solutions to this Hamiltonian constraint which is a generalization of the solution discovered by Jacobson and Smolin. These solutions are given by particular linear combinations of the spin network states. While the classical counterparts of these solutions have degenerate metric, due to a \lq quantum effect' the area operator has nonvanishing action on these states. We also discuss how to extend our results to (3+1)-dimensions.Comment: 41 pages Latex (2 figures available as a postscript file
    corecore