46 research outputs found
Recent Advances in Graph-based Machine Learning for Applications in Smart Urban Transportation Systems
The Intelligent Transportation System (ITS) is an important part of modern
transportation infrastructure, employing a combination of communication
technology, information processing and control systems to manage transportation
networks. This integration of various components such as roads, vehicles, and
communication systems, is expected to improve efficiency and safety by
providing better information, services, and coordination of transportation
modes. In recent years, graph-based machine learning has become an increasingly
important research focus in the field of ITS aiming at the development of
complex, data-driven solutions to address various ITS-related challenges. This
chapter presents background information on the key technical challenges for ITS
design, along with a review of research methods ranging from classic
statistical approaches to modern machine learning and deep learning-based
approaches. Specifically, we provide an in-depth review of graph-based machine
learning methods, including basic concepts of graphs, graph data
representation, graph neural network architectures and their relation to ITS
applications. Additionally, two case studies of graph-based ITS applications
proposed in our recent work are presented in detail to demonstrate the
potential of graph-based machine learning in the ITS domain
Topics in Deep Learning and Optimization Algorithms for IoT Applications in Smart Transportation
Nowadays, the Internet of Things (IoT) has become one of the most important technologies which enables a variety of connected and intelligent applications in smart cities. The smart decision making process of IoT devices not only relies on the large volume of data collected from their sensors, but also depends on advanced optimization theories and novel machine learning technologies which can process and analyse the collected data in specific network structure. Therefore, it becomes practically important to investigate how different optimization algorithms and machine learning techniques can be leveraged to improve system performance for real world IoT applications in a graph-based environment. As one of the most important vertical domains for IoT applications, smart transportation system has played a key role for providing real-world information and services to citizens by making their access to transport facilities easier and thus it is one of the key application areas to be explored in this thesis. In a nutshell, this thesis covers three key topics related to applying mathematical optimization and deep learning methods to IoT networks. In the first topic, we propose an optimal transmission frequency management scheme using decentralized ADMM-based method in a IoT network and introduce a mechanism to identify anomalies in data transmission frequency using an LSTM-based architecture. In the second topic, we leverage graph neural network (GNN) for demand prediction for shared bikes. In particular, we introduce a novel architecture, i.e., attention-based spatial temporal graph convolutional network (AST-GCN), to improve the prediction accuracy in real world datasets. In the last topic, we consider a highway traffic network scenario where frequent lane changing behaviors may occur with probability. A specific GNN based anomaly detector is devised to reveal such a probability driven by data collected in a dedicated mobility simulator
Lane-GNN: integrating GNN for predicting drivers’ lane change intention
Nowadays, intelligent highway traffic network is playing an important role in modern transportation infrastructures. A variable speed limit (VSL) system can be facilitated in the highway traffic network to provide useful and dynamic speed limit information for drivers to travel with enhanced safety. Such system is usually designed with a steady advisory speed in mind so that traffic can move smoothly when drivers follow the speed, rather than speeding up whenever there is a gap and slowing down at congestion. However, little attention has been given to the research of vehicles’ behaviours when drivers left the road network governed by a VSL system, which may largely involve unexpected acceleration, deceleration and frequent lane changes, resulting in chaos for the subsequent highway road users. In this paper, we focus on the detection of traffic flow anomaly due to drivers’ lane change intention on the highway traffic networks after a VSL system. More specifically, we apply graph modelling on the traffic flow data generated by a popular mobility simulator, SUMO, at road segment levels. We then evaluate the performance of lane changing detection using the proposed Lane-GNN scheme, an attention temporal graph convolutional neural network, and compare its performance with a temporal convolutional neural network (TCNN) as our baseline. Our experimental results show that the proposed Lane-GNN can detect drivers’ lane change intention within 90 seconds with an accuracy of 99.42% under certain assumptions. Finally, some interpretation methods are applied to the trained models with a view to further illustrate our findings
A comparative study of using spatial-temporal graph convolutional networks for predicting availability in bike sharing schemes
Accurately forecasting transportation demand is crucial for efficient urban traffic guidance, control and management. One solution to enhance the level of prediction accuracy is to leverage graph convolutional networks (GCN), a neural network based modelling approach with the ability to process data contained in graph based structures. As a powerful extension of GCN, a spatial-temporal graph convolutional network (ST-GCN) aims to capture the relationship of data contained in the graphical nodes across both spatial and temporal dimensions, which presents a novel deep learning paradigm for the analysis of complex time-series data that also involves spatial information as present in transportation use cases. In this paper, we present an Attention-based ST-GCN (AST-GCN) for predicting the number of available bikes in bike-sharing systems in cities, where the attention-based mechanism is introduced to further improve the performance of an ST-GCN. Furthermore, we also discuss the impacts of different modelling methods of adjacency matrices on the proposed architecture. Our experimental results are presented using two real-world datasets, Dublinbikes and NYC-Citi Bike, to illustrate the efficacy of our proposed model which outperforms the majority of existing approaches
An ADMM-based optimal transmission frequency management system for IoT edge intelligence
In this paper, we investigate a key problem of Internet of Things (IoT) applications in practice. Our research objective is to optimize the transmission frequencies for a group of IoT edge devices under practical constraints. Our key assumption is that different IoT devices may have different priority levels when transmitting data in a resource-constrained environment and that those priority levels may only be locally defined and accessible by edge devices for privacy concerns. To address this problem, we leverage the well-known Alternating Direction Method of Multipliers (ADMM) optimization method and demonstrate its applicability for effectively managing various IoT data streams in a decentralized framework. Our experimental results show that the transmission frequency of each edge device can converge to optimality with little delay using ADMM, and the proposed system can be adjusted dynamically when a new device connects to the system. In addition, we also introduce an anomaly detection mechanism to the system when a device's transmission frequency may be compromised by external manipulation, showing that the proposed system is robust and secure for various IoT applications
Prediction of DNA-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature
Motivation: In this work, we aim to develop a computational approach for predicting DNA-binding sites in proteins from amino acid sequences. To avoid overfitting with this method, all available DNA-binding proteins from the Protein Data Bank (PDB) are used to construct the models. The random forest (RF) algorithm is used because it is fast and has robust performance for different parameter values. A novel hybrid feature is presented which incorporates evolutionary information of the amino acid sequence, secondary structure (SS) information and orthogonal binary vector (OBV) information which reflects the characteristics of 20 kinds of amino acids for two physical–chemical properties (dipoles and volumes of the side chains). The numbers of binding and non-binding residues in proteins are highly unbalanced, so a novel scheme is proposed to deal with the problem of imbalanced datasets by downsizing the majority class
Dietary Modulation of Gut Microbiota Contributes to Alleviation of Both Genetic and Simple Obesity in Children
Gut microbiota has been implicated as a pivotal contributing factor in diet-related obesity; however, its role in development of disease phenotypes in human genetic obesity such as Prader–Willi syndrome (PWS) remains elusive. In this hospitalized intervention trial with PWS (n = 17) and simple obesity (n = 21) children, a diet rich in non-digestible carbohydrates induced significant weight loss and concomitant structural changes of the gut microbiota together with reduction of serum antigen load and alleviation of inflammation. Co-abundance network analysis of 161 prevalent bacterial draft genomes assembled directly from metagenomic datasets showed relative increase of functional genome groups for acetate production from carbohydrates fermentation. NMR-based metabolomic profiling of urine showed diet-induced overall changes of host metabotypes and identified significantly reduced trimethylamine N-oxide and indoxyl sulfate, host-bacteria co-metabolites known to induce metabolic deteriorations. Specific bacterial genomes that were correlated with urine levels of these detrimental co-metabolites were found to encode enzyme genes for production of their precursors by fermentation of choline or tryptophan in the gut. When transplanted into germ-free mice, the pre-intervention gut microbiota induced higher inflammation and larger adipocytes compared with the post-intervention microbiota from the same volunteer. Our multi-omics-based systems analysis indicates a significant etiological contribution of dysbiotic gut microbiota to both genetic and simple obesity in children, implicating a potentially effective target for alleviation
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe