555 research outputs found

    Proteinā€“Protein Interaction Hotspots Carved into Sequences

    Get PDF
    Proteinā€“protein interactions, a key to almost any biological process, are mediated by molecular mechanisms that are not entirely clear. The study of these mechanisms often focuses on all residues at proteinā€“protein interfaces. However, only a small subset of all interface residues is actually essential for recognition or binding. Commonly referred to as ā€œhotspots,ā€ these essential residues are defined as residues that impede proteinā€“protein interactions if mutated. While no in silico tool identifies hotspots in unbound chains, numerous prediction methods were designed to identify all the residues in a protein that are likely to be a part of proteinā€“protein interfaces. These methods typically identify successfully only a small fraction of all interface residues. Here, we analyzed the hypothesis that the two subsets correspond (i.e., that in silico methods may predict few residues because they preferentially predict hotspots). We demonstrate that this is indeed the case and that we can therefore predict directly from the sequence of a single protein which residues are interaction hotspots (without knowledge of the interaction partner). Our results suggested that most protein complexes are stabilized by similar basic principles. The ability to accurately and efficiently identify hotspots from sequence enables the annotation and analysis of proteinā€“protein interaction hotspots in entire organisms and thus may benefit function prediction and drug development. The server for prediction is available at http://www.rostlab.org/services/isis

    FFPred: an integrated feature-based function prediction server for vertebrate proteomes

    Get PDF
    One of the challenges of the post-genomic era is to provide accurate function annotations for large volumes of data resulting from genome sequencing projects. Most function prediction servers utilize methods that transfer existing database annotations between orthologous sequences. In contrast, there are few methods that are independent of homology and can annotate distant and orphan protein sequences. The FFPred server adopts a machine-learning approach to perform function prediction in protein feature space using feature characteristics predicted from amino acid sequence. The features are scanned against a library of support vector machines representing over 300 Gene Ontology (GO) classes and probabilistic confidence scores returned for each annotation term. The GO term library has been modelled on human protein annotations; however, benchmark performance testing showed robust performance across higher eukaryotes. FFPred offers important advantages over traditional function prediction servers in its ability to annotate distant homologues and orphan protein sequences, and achieves greater coverage and classification accuracy than other feature-based prediction servers. A user may upload an amino acid and receive annotation predictions via email. Feature information is provided as easy to interpret graphics displayed on the sequence of interest, allowing for back-interpretation of the associations between features and function classes

    New in protein structure and function annotation: Hotspots, single nucleotide polymorphisms and the 'Deep Web'

    Get PDF
    The rapidly increasing quantity of protein sequence data continues to widen the gap between available sequences and annotations. Comparative modeling suggests some aspects of the 3D structures of approximately half of all known proteins; homology- and network-based inferences annotate some aspect of function for a similar fraction of the proteome. For most known protein sequences, however, there is detailed knowledge about neither their function nor their structure. Comprehensive efforts towards the expert curation of sequence annotations have failed to meet the demand of the rapidly increasing number of available sequences. Only the automated prediction of protein function in the absence of homology can close the gap between available sequences and annotations in the foreseeable future. This review focuses on two novel methods for automated annotation, and briefly presents an outlook on how modern web software may revolutionize the field of protein sequence annotation. First, predictions of protein binding sites and functional hotspots, and the evolution of these into the most successful type of prediction of protein function from sequence will be discussed. Second, a new tool, comprehensive in silico mutagenesis, which contributes important novel predictions of function and at the same time prepares for the onset of the next sequencing revolution, will be described. While these two new sub-fields of protein prediction represent the breakthroughs that have been achieved methodologically, it will then be argued that a different development might further change the way biomedical researchers benefit from annotations: modern web software can connect the worldwide web in any browser with the 'Deep Web' (ie, proprietary data resources). The availability of this direct connection, and the resulting access to a wealth of data, may impact drug discovery and development more than any existing method that contributes to protein annotation

    HotPoint: hot spot prediction server for protein interfaces

    Get PDF
    The energy distribution along the proteinā€“protein interface is not homogenous; certain residues contribute more to the binding free energy, called ā€˜hot spotsā€™. Here, we present a web server, HotPoint, which predicts hot spots in protein interfaces using an empirical model. The empirical model incorporates a few simple rules consisting of occlusion from solvent and total knowledge-based pair potentials of residues. The prediction model is computationally efficient and achieves high accuracy of 70%. The input to the HotPoint server is a protein complex and two chain identifiers that form an interface. The server provides the hot spot prediction results, a table of residue properties and an interactive 3D visualization of the complex with hot spots highlighted. Results are also downloadable as text files. This web server can be used for analysis of any proteinā€“protein interface which can be utilized by researchers working on binding sites characterization and rational design of small molecules for protein interactions. HotPoint is accessible at http://prism.ccbb.ku.edu.tr/hotpoint

    Is there a sex difference in mortality rates in paediatric intensive care units? A systematic review

    Get PDF
    Introduction: Mortality rates in infancy and childhood are lower in females than males. However, for children admitted to Paediatric Intensive Care Units (PICU), mortality has been reported to be lower in males, although males have higher admission rates. This female mortality excess for the subgroup of children admitted in intensive care is not well understood. To address this, we carried out a systematic literature review to summarise the available evidence. Our review studies the differences in mortality between males and females aged 0 to <18 years, while in a PICU, to examine whether there was a clear difference (in either direction) in PICU mortality between the two sexes, and, if present, to describe the magnitude and direction of this difference. Methods: Any studies that directly or indirectly reported the rates of mortality in children admitted to intensive care by sex were eligible for inclusion. The search strings were based on terms related to the population (those admitted into a paediatric intensive care unit), the exposure (sex), and the outcome (mortality). We used the search databases MEDLINE, Embase, and Web of Science as these cover relevant clinical publications. We assessed the reliability of included studies using a modified version of the risk of bias in observational studies of exposures (ROBINS-E) tool. We considered estimating a pooled effect if there were at least three studies with similar populations, periods of follow-up while in PICU, and adjustment variables. Results: We identified 124 studies of which 114 reported counts of deaths by males and females which gave a population of 278,274 children for analysis, involving 121,800 (44%) females and 156,474 males (56%). The number of deaths and mortality rate for females were 5,614 (4.61%), and for males 6,828 (4.36%). In the pooled analysis, the odds ratio of female to male mortality was 1.06 [1.01 to 1.11] for the fixed effect model, and 1.10 [1.00 to 1.21] for the random effects model. Discussion: Overall, males have a higher admission rate to PCU, and potentially lower overall mortality in PICU than females

    Is there a sex difference in mortality rates in paediatric intensive care units?: a systematic review

    Get PDF
    INTRODUCTION: Mortality rates in infancy and childhood are lower in females than males. However, for children admitted to Paediatric Intensive Care Units (PICU), mortality has been reported to be lower in males, although males have higher admission rates. This female mortality excess for the subgroup of children admitted in intensive care is not well understood. To address this, we carried out a systematic literature review to summarise the available evidence. Our review studies the differences in mortality between males and females aged 0 to <18 years, while in a PICU, to examine whether there was a clear difference (in either direction) in PICU mortality between the two sexes, and, if present, to describe the magnitude and direction of this difference. METHODS: Any studies that directly or indirectly reported the rates of mortality in children admitted to intensive care by sex were eligible for inclusion. The search strings were based on terms related to the population (those admitted into a paediatric intensive care unit), the exposure (sex), and the outcome (mortality). We used the search databases MEDLINE, Embase, and Web of Science as these cover relevant clinical publications. We assessed the reliability of included studies using a modified version of the risk of bias in observational studies of exposures (ROBINS-E) tool. We considered estimating a pooled effect if there were at least three studies with similar populations, periods of follow-up while in PICU, and adjustment variables. RESULTS: We identified 124 studies of which 114 reported counts of deaths by males and females which gave a population of 278,274 children for analysis, involving 121,800 (44%) females and 156,474 males (56%). The number of deaths and mortality rate for females were 5,614 (4.61%), and for males 6,828 (4.36%). In the pooled analysis, the odds ratio of female to male mortality was 1.06 [1.01 to 1.11] for the fixed effect model, and 1.10 [1.00 to 1.21] for the random effects model. DISCUSSION: Overall, males have a higher admission rate to PCU, and potentially lower overall mortality in PICU than females. SYSTEMATIC REVIEW REGISTRATION: www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=203009, identifier (CRD42020203009)

    DNABINDPROT: fluctuation-based predictor of DNA-binding residues within a network of interacting residues

    Get PDF
    DNABINDPROT is designed to predict DNA-binding residues, based on the fluctuations of residues in high-frequency modes by the Gaussian network model. The residue pairs that display high mean-square distance fluctuations are analyzed with respect to DNA binding, which are then filtered with their evolutionary conservation profiles and ranked according to their DNA-binding propensities. If the analyses are based on the exact outcome of fluctuations in the highest mode, using a conservation threshold of 5, the results have a sensitivity, specificity, precision and accuracy of 9.3%, 90.5%, 18.1% and 78.6%, respectively, on a dataset of 36 unboundā€“bound protein structure pairs. These values increase up to 24.3%, 93.4%, 45.3% and 83.3% for the respective cases, when the neighboring two residues are considered. The relatively low sensitivity appears with the identified residues being selective and susceptible more for the binding core residues rather than all DNA-binding residues. The predicted residues that are not tagged as DNA-binding residues are those whose fluctuations are coupled with DNA-binding sites. They are in close proximity as well as plausible for other functional residues, such as ligand and proteinā€“protein interaction sites. DNABINDPROT is free and open to all users without login requirement available at: http://www.prc.boun.edu.tr/appserv/prc/dnabindprot/

    NAPS: a residue-level nucleic acid-binding prediction server

    Get PDF
    Nucleic acid-binding proteins are involved in a great number of cellular processes. Understanding the mechanisms underlying these proteins first requires the identification of specific residues involved in nucleic acid binding. Prediction of NA-binding residues can provide practical assistance in the functional annotation of NA-binding proteins. Predictions can also be used to expedite mutagenesis experiments, guiding researchers to the correct binding residues in these proteins. Here, we present a method for the identification of amino acid residues involved in DNA- and RNA-binding using sequence-based attributes. The method used in this work combines the C4.5 algorithm with bootstrap aggregation and cost-sensitive learning. Our DNA-binding model achieved 79.1% accuracy, while the RNA-binding model reached an accuracy of 73.2%. The NAPS web server is freely available at http://proteomics.bioengr.uic.edu/NAPS

    KFC Server: interactive forecasting of protein interaction hot spots

    Get PDF
    The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) modelā€”a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted proteinā€“protein or proteinā€“DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local structural environment, compares that environment to the environments of experimentally determined hot spots and predicts if the interface residue is a hot spot. After the computational analysis, the user can visualize the results using an interactive job viewer able to quickly highlight predicted hot spots and surrounding structural features within the protein structure. The KFC Server is accessible at http://kfc.mitchell-lab.org

    HotSprint: database of computational hot spots in protein interfaces

    Get PDF
    We present a new database of computational hot spots in protein interfaces: HotSprint. Hot spots are residues comprising only a small fraction of interfaces yet accounting for the majority of the binding energy. HotSprint contains data for 35 776 protein interfaces among 49 512 protein interfaces extracted from the multi-chain structures in Protein Data Bank (PDB) as of February 2006. The conserved residues in interfaces with certain buried accessible solvent area (ASA) and complex ASA thresholds are flagged as computational hot spots. The predicted hot spots are observed to correlate with the experimental hot spots with an accuracy of 76%. Several machine-learning methods (SVM, Decision Trees and Decision Lists) are also applied to predict hot spots, results reveal that our empirical approach performs better than the others. A web interface for the HotSprint database allows users to browse and query the hot spots in protein interfaces. HotSprint is available at http://prism.ccbb.ku.edu.tr/hotsprint; and it provides information for interface residues that are functionally and structurally important as well as the evolutionary history and solvent accessibility of residues in interfaces
    • ā€¦
    corecore