94 research outputs found
Discovery of the peculiar supernova 1998bw in the error box of GRB980425
The discovery of X-ray, optical and radio afterglows of gamma-ray bursts
(GRBs) and the measurements of the distances to some of them have established
that these events come from Gpc distances and are the most powerful photon
emitters known in the Universe, with peak luminosities up to 10^52 erg/s. We
here report the discovery of an optical transient, in the BeppoSAX Wide Field
Camera error box of GRB980425, which occurred within about a day of the
gamma-ray burst. Its optical light curve, spectrum and location in a spiral arm
of the galaxy ESO 184-G82, at a redshift z = 0.0085, show that the transient is
a very luminous type Ic supernova, SN1998bw. The peculiar nature of SN1998bw is
emphasized by its extraordinary radio properties which require that the radio
emitter expand at relativistical speed. Since SN1998bw is very different from
all previously observed afterglows of GRBs, our discovery raises the
possibility that very different mechanisms may give rise to GRBs, which differ
little in their gamma-ray properties.Comment: Under press embargo at Nature (submitted June 10, 1998
Spectrophotometric analysis of gamma-ray burst afterglow extinction curves with X-shooter
In this work we use gamma-ray burst (GRB) afterglow spectra observed with the VLT/X-shooter spectrograph to measure rest-frame extinction in GRB lines-of-sight by modeling the broadband near-infrared (NIR) to X-ray afterglow spectral energy distributions (SEDs). Our sample consists of nine Swift GRBs, eight of them belonging to the long-duration and one to the short-duration class. Dust is modeled using the average extinction curves of the Milky Way and the two Magellanic Clouds. We derive the rest-frame extinction of the entire sample, which fall in the range . Moreover, the SMC extinction curve is the preferred extinction curve template for the majority of our sample, a result which is in agreement with those commonly observed in GRB lines-of-sights. In one analysed case (GRB 120119A), the common extinction curve templates fail to reproduce the observed extinction. To illustrate the advantage of using the high-quality X-shooter afterglow SEDs over the photometric SEDs, we repeat the modeling using the broadband SEDs with the NIR-to-UV photometric measurements instead of the spectra. The main result is that the spectroscopic data, thanks to a combination of excellent resolution and coverage of the blue part of the SED, are more successful in constraining the extinction curves and therefore the dust properties in GRB hosts with respect to photometric measurements. In all cases but one the extinction curve of one template is preferred over the others. We show that the modeled values of the extinction and the spectral slope, obtained through spectroscopic and photometric SED analysis, can differ significantly for individual events. Finally we stress that, regardless of the resolution of the optical-to-NIR data, the SED modeling gives reliable results only when the fit is performed on a SED covering a broader spectral region
What do -ray bursts look like?
There have been great and rapid progresses in the field of -ray
bursts (denoted as GRBs) since BeppoSAX and other telescopes discovered their
afterglows in 1997. Here, we will first give a brief review on the
observational facts of GRBs and direct understanding from these facts, which
lead to the standard fireball model. The dynamical evolution of the fireball is
discussed, especially a generic model is proposed to describe the whole
dynamical evolution of GRB remnant from highly radiative to adiabatic, and from
ultra-relativistic to non-relativistic phase. Then, Various deviations from the
standard model are discussed to give new information about GRBs and their
environment. In order to relax the energy crisis, the beaming effects and their
possible observational evidences are also discussed in GRB's radiations.Comment: 10 pages, Latex. Invited talk at the Pacific Rim Conference on
Stellar Astrophysics, Hong Kong, China, Aug. 199
The unpolarized macronova associated with the gravitational wave event GW 170817
The merger of two dense stellar remnants including at least one neutron star
(NS) is predicted to produce gravitational waves (GWs) and short duration gamma
ray bursts (GRBs). In the process, neutron-rich material is ejected from the
system and heavy elements are synthesized by r-process nucleosynthesis. The
radioactive decay of these heavy elements produces additional transient
radiation termed "kilonova" or "macronova". We report the detection of linear
optical polarization P = (0.50 +/- 0.07)% at 1.46 days after detection of the
GWs from GW170817, a double neutron star merger associated with an optical
macronova counterpart and a short GRB. The optical emission from a macronova is
expected to be characterized by a blue, rapidly decaying, component and a red,
more slowly evolving, component due to material rich of heavy elements, the
lanthanides. The polarization measurement was made when the macronova was still
in its blue phase, during which there is an important contribution from a
lanthanide-free outflow. The low degree of polarization is consistent with
intrinsically unpolarized emission scattered by Galactic dust, suggesting a
symmetric geometry of the emitting region and low inclination of the merger
system. Stringent upper limits to the polarization degree from 2.45 - 9.48 days
post-burst are consistent with the lanthanides-rich macronova interpretation.Comment: 18 pages, 1 figure, 2 tables, Nature Astronomy, in pres
The Environment of the Binary Neutron Star Merger GW170817
We present Hubble Space Telescope (HST) and Chandra imaging, combined with Very Large Telescope MUSE integral field spectroscopy of the counterpart and host galaxy of the first binary neutron star merger detected via gravitational-wave emission by LIGO and Virgo, GW170817. The host galaxy, NGC 4993, is an S0 galaxy at z = 0.009783. There is evidence for large, face-on spiral shells in continuum imaging, and edge-on spiral features visible in nebular emission lines. This suggests that NGC 4993 has undergone a relatively recent ( Gyr) "dry" merger. This merger may provide the fuel for a weak active nucleus seen in Chandra imaging. At the location of the counterpart, HST imaging implies there is no globular or young stellar cluster, with a limit of a few thousand solar masses for any young system. The population in the vicinity is predominantly old with lesssim1% of any light arising from a population with ages . Both the host galaxy properties and those of the transient location are consistent with the distributions seen for short-duration gamma-ray bursts, although the source position lies well within the effective radius ( kpc), providing an r e -normalized offset that is closer than of short GRBs. For the long delay time implied by the stellar population, this suggests that the kick velocity was significantly less than the galaxy escape velocity. We do not see any narrow host galaxy interstellar medium features within the counterpart spectrum, implying low extinction, and that the binary may lie in front of the bulk of the host galaxy
The Emergence of a Lanthanide-rich Kilonova Following the Merger of Two Neutron Stars
We report the discovery and monitoring of the near-infrared counterpart
(AT2017gfo) of a binary neutron-star merger event detected as a gravitational
wave source by Advanced LIGO/Virgo (GW170817) and as a short gamma-ray burst by
Fermi/GBM and Integral/SPI-ACS (GRB170817A). The evolution of the transient
light is consistent with predictions for the behaviour of a
"kilonova/macronova", powered by the radioactive decay of massive neutron-rich
nuclides created via r-process nucleosynthesis in the neutron-star ejecta. In
particular, evidence for this scenario is found from broad features seen in
Hubble Space Telescope infrared spectroscopy, similar to those predicted for
lanthanide dominated ejecta, and the much slower evolution in the near-infrared
Ks-band compared to the optical. This indicates that the late-time light is
dominated by high-opacity lanthanide-rich ejecta, suggesting nucleosynthesis to
the 3rd r-process peak (atomic masses A~195). This discovery confirms that
neutron-star mergers produce kilo-/macronovae and that they are at least a
major - if not the dominant - site of rapid neutron capture nucleosynthesis in
the universe
Accreting Millisecond X-Ray Pulsars
Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories
without parallel in the study of extreme physics. In this chapter we review the
past fifteen years of discoveries in the field. We summarize the observations
of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength
observations that have been carried out since the discovery of the first AMXP
in 1998. We review accretion torque theory, the pulse formation process, and
how AMXP observations have changed our view on the interaction of plasma and
magnetic fields in strong gravity. We also explain how the AMXPs have deepened
our understanding of the thermonuclear burst process, in particular the
phenomenon of burst oscillations. We conclude with a discussion of the open
problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations
and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer;
[revision with literature updated, several typos removed, 1 new AMXP added
A LOFAR DETECTION of the LOW-MASS YOUNG STAR T TAU at 149 MHz
© 2017 Published by Elsevier B.V. Radio observations of young stellar objects (YSOs) enable the study of ionized plasma outflows from young protostars via their free-free radiation. Previous studies of the low-mass young system T Tau have used radio observations to model the spectrum and estimate important physical properties of the associated ionized plasma (local electron density, ionized gas content, and emission measure). However, without an indication of the low-frequency turnover in the free-free spectrum, these properties remain difficult to constrain. This paper presents the detection of T Tau at 149 MHz with the Low Frequency Array (LOFAR)-the first time a YSO has been observed at such low frequencies. The recovered total flux indicates that the free-free spectrum may be turning over near 149 MHz. The spectral energy distribution is fitted and yields improved constraints on local electron density ((7.2 ± 2.1) × 103 cm-3), ionized gas mass ( ± × -1.0 1.8 10-6Ṁ), and emission measure ((1.67 ± 0.14) × 105 pc cm-6)
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Localization and Broadband Follow-Up of the Gravitational-Wave Transient GW150914
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser InterferometerGravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimatesof the time, significance, and sky location of the event were shared with 63 teams of observers covering radio,optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter wedescribe the low-latency analysis of the GW data and present the sky localization of the first observed compactbinary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-rayCoordinates Network circulars, giving an overview of the participating facilities, the GW sky localizationcoverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger,there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadbandcampaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broadcapabilities of the transient astronomy community and the observing strategies that have been developed to pursueneutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-upcampaign are being disseminated in papers by the individual teams
- …
