26 research outputs found

    Chemistry, radiation, aerosols and clouds in the atmosphere

    Get PDF
    Fil: Achad, Mariana. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Físico Química; Argentina.Fil: Olcese, Luis Eduardo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Físico Química ; Argentina.Fil: Palancar, Gustavo Gerardo Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Físico Química; Argentina.Fill: Toselli, Beatriz Margarita Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Físico Química; Argentina.Fil: López, María Laura. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas . Departamento de Físico Química; Argentina.Abstract Ultraviolet-B radiation (UV-B, 280-315 nm) is monitored in Córdoba, Argentina (31º 24´ S, 64º 11´ W, 400 m above sea level) using a Yankee Environmental Systems (YES) pyranometer, model UVB-1. Measurements of solar broad band UV-B irradiances are conducted since November 1998. These are, to our knowledge, the first measurements obtained in Córdoba with a high quality pyranometer. For clear sky days, the measurements are in good agreement with results of a radiative transfer model. However, this study shows substantial reductions of UV-B radiation on cloudy days and days with high levels of particle matter. These two effects are comprehensively addressed in this chapter. The effects of cumulus, cirrus, and stratocumulus clouds on surface radiation are specifically analyzed. In addition, the effect of aerosols on air quality is addressed measuring the monthly concentration of PM10 (2009-2010) and PM2.5 (2009-2011) and the average chemical composition (2009-2010) by means of the Synchrotron radiation X-ray fluorescence technique (SR-XRF). Electronic microcopies (TEM, SEM) are used to analyze individual particles and provide complementary information on shape, size and chemical composition.Fil: Achad, Mariana. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Físico Química; Argentina.Fil: Olcese, Luis Eduardo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Físico Química ; Argentina.Fil: Palancar, Gustavo Gerardo Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Físico Química; Argentina.Fill: Toselli, Beatriz Margarita Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Físico Química; Argentina.Fil: López, María Laura. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas . Departamento de Físico Química; Argentina.Otras Ciencias Química

    Ultraviolet actinic flux in clear and cloudy atmospheres: Model calculations and aircraft-based measurements

    Get PDF
    Ultraviolet (UV) actinic fluxes measured with two Scanning Actinic Flux Spectroradiometers (SAFS) aboard the NASA DC-8 aircraft are compared with the Tropospheric Ultraviolet-Visible (TUV) model. The observations from 17 days in July-August 2004 (INTEX-NA field campaign) span a wide range of latitudes (28°N-53° N), longitudes (45° Wĝ€"140° W), altitudes (0.1ĝ€"11.9 km), ozone columns (285-353 DU), and solar zenith angles (2°85°). Both cloudy and cloud-free conditions were encountered. For cloud-free conditions, the ratio of observed to clear-sky-model actinic flux (integrated from 298 to 422 nm) was 1.01±0.04, i.e. in good agreement with observations. The agreement improved to 1.00±0.03 for the down-welling component under clear sky conditions. In the presence of clouds and depending on their position relative to the aircraft, the up-welling component was frequently enhanced (by as much as a factor of 8 relative to cloud-free values) while the down-welling component showed both reductions and enhancements of up to a few tens of percent. Including all conditions, the ratio of the observed actinic flux to the cloud-free model value was 1.1±0.3 for the total, or separately 1.0±0.2 for the down-welling and 1.5±0.8 for the up-welling components. The correlations between up-welling and down-welling deviations are well reproduced with sensitivity studies using the TUV model, and are understood qualitatively with a simple conceptual model. This analysis of actinic flux observations illustrates opportunities for future evaluations of photolysis rates in three-dimensional chemistry-transport models.Fil: Palancar, Gustavo Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Shetter, R. E.. National Center For Atmospheric Research. Amospheric Chemistry División; Estados UnidosFil: Hall, Samuel R.. National Center For Atmospheric Research. Amospheric Chemistry División; Estados UnidosFil: Toselli, Beatriz Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Madronich, S.. National Center For Atmospheric Research. Amospheric Chemistry División; Estados Unido

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults

    Get PDF
    Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from 1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories. Methods We used data from 3663 population-based studies with 222 million participants that measured height and weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the individual and combined prevalence of underweight (BMI <18·5 kg/m2) and obesity (BMI ≥30 kg/m2). For schoolaged children and adolescents, we report thinness (BMI <2 SD below the median of the WHO growth reference) and obesity (BMI >2 SD above the median). Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in 11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and 140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%) with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and 42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents, the increases in double burden were driven by increases in obesity, and decreases in double burden by declining underweight or thinness. Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of underweight while curbing and reversing the increase in obesit

    Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight NCD Risk Factor Collaboration (NCD-RisC)

    Get PDF
    From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions

    Effects of the inclusion of bending-to-stretching transitions in the non-LTE modeling of ozone vibrational temperatures

    Get PDF
    A description of the non-LTE intramolecular ozone relaxation cascade considering the relative importance of different transitions on the O3(v1v2v3) vibrational levels has been studied by quantifying the kinetic law of every process and transition that affect each level population. The analysis considers the inclusion for the first-time of bending-to-stretching (k2D) transitions in the energy relaxation cascade of ozone after it is formed by three-body recombination. In this way, the vibrational temperatures and the relative contribution of every transition are presented as a function of altitude. The results show that the inclusion of the bending-to-stretching transitions in the O3 non-LTE relaxation scheme decreases the ν2-mode overpopulation and therefore the stretching levels' population increases, as required for a correct radiance simulation of the 4.8γm ozone emission in the upper atmosphere.Fil: Fernandez, Rafael Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Kaufmann, Martín. Research Center Julich, Institute for Chemistry and Dynamics of the Geosphere; AlemaniaFil: Toselli, Beatriz Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentin

    A method to estimate missing AERONET AOD values based on artificial neural networks

    Get PDF
    In this work, we present a method to predict missing aerosol optical depth (AOD) values at an AERONET station. The aim of the method is to fill gaps and/or to extrapolate temporal series in the station datasets, i.e. to obtain AOD values under cloudy sky conditions and in other situations where there is a temporary or permanent lack of data. To accomplish that, we used historical AOD values at two stations, air mass trajectories passing through both of them (calculated by using the HYSPLIT model) and ANN calculations to process all the information. The variables included in the neural network training were the station numbers, parameters representing the annual average trend of meteorological conditions, the number of hours and the distance traveled by the air mass between the stations, and the arrival height of the air mass. The method was firstly applied to predict AOD at 440 nm in 9 stations located in the East Coast of the US, during the years 1999–2012. The coefficient of determination r2 between measured and calculated AOD values was 0.855, which show the good performance of the method. Besides, this result represents a remarkable improvement compared to three simple approaches. To further validate the method, we applied it to another region (Iberian Peninsula) with different characteristics (lower density of AERONET stations, different meteorology, and lower wind field spatial resolution). Although the results are still good (r2 = 0.67), the performance of the method was affected by these characteristics. Considering the obtained results, this method can be used as a powerful tool to predict AOD values in several conditions. The methodology can also be easily adapted to predict AOD values at other wavelengths or other aerosol optical properties.Fil: Olcese, Luis Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Palancar, Gustavo Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Toselli, Beatriz Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentin

    Effect of different types of clouds on surface UV-B and total solar irradiance at southern mid-latitudes: CMF determinations at Córdoba, Argentina

    No full text
    The effect of clouds on total and UV-B irradiance in Córdoba, Argentina, was studied employing the TUV 4.1 model and measurements obtained with YES UVB-1 and YES TSP-700 radiometers, and a spectral radiometer Ocean Optics USB-4000. The experimental measurements were selected from a 10 years dataset (1999-2008). Clouds were classified by direct observation as cirrus, cumulus, and stratocumulus. The broadband Cloud Modification Factors (CMFs) have been calculated in the range of the total and the UV-B radiation for these types of clouds. The relations between them were analyzed for a significant number of days. The broadband CMF values range from around 0.1 up to 1.25, depending on the wavelength interval and on the cloud type. The CMFUVB versus CMFT plots for different clouds have shown good adjustments and significant differences, which allows the distinction between them. Stratocumulus clouds show large attenuations and a linear relation with larger slopes as the solar zenith angle (SZA) increases. For this type of clouds an average slope of (1.0 ± 0.2) was found. The relation between the CMF for cumulus clouds is linear with an average slope of (0.61 ± 0.01). No dependence with the SZA was observed. Cirrus clouds plots show an exponential behavior with fit parameters equal to (0.48 ± 0.08) and (0.68 ± 0.15). However, when small SZA intervals are analyzed a linear relation is found. When the relations between the CMF were similar (cumulus and cirrus), the spectral variation in the UV range (320-420 nm) of a modified CMF (CMFm) was used to distinguish them. Hence, the spectral differences among the three types of clouds have been also analyzed for several days and SZA. Here, it was found that the effect of cirrus is essentially wavelength independent while cumulus and stratocumulus clouds show exponential decay relations but with different ordinates. In the analyzed relations the microphysical properties of the clouds seem to determine its behavior while the optical thickness leads to the different degrees of attenuation. The results obtained in this work are in agreement with those found for other authors.Fil: Lopez, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Palancar, Gustavo Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Toselli, Beatriz Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentin

    Aerosol optical properties in central Argentina

    Get PDF
    This work presents the analysis of the long-term observations of aerosol optical properties in the central region of Argentina. Monitoring of aerosol parameters was carried out at the Cordoba-CETT AERONET site (31° 31' S, 64° 27' W, 730. m.a.s.l.) from November 1999 until December 2010. Long-term measurements of aerosol optical depth, Ångström exponent, fine mode fraction and single scattering albedo were analyzed and compiled to describe the climatology of the optical properties of the aerosols of the region. The knowledge of the optical properties of aerosols and their spatial distribution is required to evaluate aerosol effects on the climate system. This information provides an opportunity for understanding how aerosols might influence the regional radiation budget. Results show that aerosol optical depth at 340. nm is characterized by low values from February to April (monthly average of 0.15±0.05), very low values from May to June (monthly average of 0.08±0.03) and a sustained increase from July to September (monthly average of 0.20±0.09) reaching a value of 0.26. From this dataset, no long-term trends are observable. Results of the inter-annual variations of the Ångström exponent between 440 and 870. nm reflect an important difference in the year 2004 compared to the other 11 years of the study. A possible explanation of this fact is elaborated with the help of back trajectory analysis. Finally, three episodes are described and analyzed, as they produced important increases of the daily aerosol optical depth value. We explained these episodes with a combination of air mass trajectory analysis, meteorology and the MODIS fire counts product. © 2013 Elsevier Ltd.Fil: Olcese, Luis Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Palancar, Gustavo Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Toselli, Beatriz Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentin

    Retrieving the relative contribution of aerosol types from single particle analysis and radiation measurements and calculations: A comparison of two independent approaches

    Get PDF
    The main purpose of this work is to determine the relative contribution of different types of aerosols at an urban site by using two independent approaches: individual particle analysis, and radiative transfer calculations and irradiance measurements. To accomplish that purpose, we used our UV-B irradiance (280–315 nm) data set, the AERONET (AErosol RObotic NETwork) database, the SEM (Scanning Electron Microscopy, LEO 1450VP) analyses of the collected particles and the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model. On one hand, the collected particles were analyzed by SEM-EDX (Energy Dispersive X-Ray, Genesis 2000) in order to determine their chemical composition. Then, by using a developed algorithm they were classified as rural or urban, resulting in a (24±3)% of rural and (76±8)% of urban. On the other hand, aerosols were incorporated into the SBDART model through two of its default profiles (urban or rural) and by using the Aerosol Optical Depth (AOD) provided by AERONET. The aerosol effect on experimental surface UV-B irradiance was reproduced by a linear combination of the irradiances calculated by using these profiles. From this analysis we found that, in average, a mix of aerosols of (30±3)% rural and (70±7)% urban explains the observed reduction in the experimental irradiance. Considering the agreement between the results obtained by using these two independent methodologies, the use of the irradiance as a surrogate variable to retrieve aerosol types is discussed. The methodology presented here is applicable to any site provided irradiance measurements and AOD are available.Fil: Achad, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Lopez, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Palancar, Gustavo Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Toselli, Beatriz Margarita. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentin
    corecore