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i.e. to obtain AOD values under cloudy sky conditions and in other situations where there is a temporary
or permanent lack of data. To accomplish that, we used historical AOD values at two stations, air mass
trajectories passing through both of them (calculated by using the HYSPLIT model) and ANN calculations
to process all the information. The variables included in the neural network training were the station
numbers, parameters representing the annual average trend of meteorological conditions, the number of

‘I:g/DW g?isciiction hours and the distance traveled by the air mass between the stations, and the arrival height of the air
Eastern US region mass. The method was firstly applied to predict AOD at 440 nm in 9 stations located in the East Coast of
Iberian Peninsula region the US, during the years 1999—2012. The coefficient of determination 2 between measured and calcu-
HYSPLIT lated AOD values was 0.855, which show the good performance of the method. Besides, this result

represents a remarkable improvement compared to three simple approaches. To further validate the
method, we applied it to another region (Iberian Peninsula) with different characteristics (lower density
of AERONET stations, different meteorology, and lower wind field spatial resolution). Although the re-
sults are still good (r? = 0.67), the performance of the method was affected by these characteristics.
Considering the obtained results, this method can be used as a powerful tool to predict AOD values in
several conditions. The methodology can also be easily adapted to predict AOD values at other wave-
lengths or other aerosol optical properties.

© 2015 Elsevier Ltd. All rights reserved.
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scattering and absorbing radiation, leading to two opposite effects:
cooling the atmosphere by backscattering the solar radiation to
space, and warming it by absorbing the terrestrial radiation (Brooks
and Legrand, 2000; Lelieveld et al., 2002). The magnitude of these
effects depends, primarily, on the aerosol load (usually quantified
through the Aerosol Optical Depth, AOD), chemical composition
and size distribution. The balance between these effects is still
under discussion, with no unanimous opinion (IPCC, 2007). In
addition, the uncertainties in their optical properties and size dis-
tribution at local and regional scales are one of the main factors
affecting the confidence in the predictive ability of the regional and
general circulation models (IPCC, 2007).

The properties of tropospheric aerosols varies widely in time
and space due to the different kind of sources, their short residence
time (2—7 days), their dependence on relative humidity and their
variability in size, shape and chemical composition. Furthermore,
aerosols are ubiquitous in the troposphere and can be transported
long distances by the wind. Thus, their effects on the atmosphere
show a strong temporal and spatial variability. To study the aerosols
and to overcome their complexity, both direct measurements and
transport models are currently used. One of main sources is the
AERONET (AErosol RObotic NETwork) network (Holben et al. 1998,
2001), deployed to retrieve information about local aerosol optical
properties in more than 300 sites over the globe in the year 2013
and more than 800 sites since its beginning in 1993. The other
relevant source is the satellite measurements, being one of the
most complete ones the Moderate-Resolution Imaging Spectror-
adiometer (MODIS), deployed on board the Terra and Aqua satel-
lites (Salomonson et al., 1992). MODIS has the great advantage of
covering the whole globe in a rather homogeneous manner. That is
why satellite data are being increasingly used as the main source of
AOD data. However, due to uncertainties introduced by surface
reflectivity and clouds, aerosol optical properties retrieved from
satellites must be validated against surface measurements. Conse-
quently, in this work we used AERONET as the source of data even
though its spatial coverage is limited. Regarding the aerosol
transport, it can be considered by analyzing the wind fields avail-
able from regional and global databases. The most widely used tool
to do that is the HYSPLIT (HYbrid Single-Particle Lagrangian Inte-
grated Trajectory) model (Draxler and Hess, 1997, 1998), which is
capable of calculating an air mass trajectory forward or backward in
time. Both HYSPLIT trajectories and AERONET measurements can
be very useful to study different aspects of air masses containing
aerosols, but by itself, none of them allows to obtain and correlate
information about the evolution of the aerosol properties along a
trajectory.

Although AERONET sunphotometers are set up to measure every
15 min, it is very common to have gaps of hours, days or even weeks
in the temporal series of optical properties. Beyond the data removal
because of the AERONET version 2.0 constraints to assure the data
quality, there are several other reasons by which the temporal series
can be incomplete, including the instrument going temporarily off-
line or being relocated, or, mainly, due to the presence of clouds (in
many cases during several days). Under these circumstances, the
hourly aerosol optical properties values are not available, and the
radiative transfer and air quality models that require those param-
eters as inputs have to be run using average values or crude esti-
mations. Besides, these gaps can lead to a distortion in the statistics
of the variables, and bias the long-term analysis and trends. Thus, the
aim of this work is to predict a missing AOD value at a site by using
the AOD value of a nearby station, provided the trajectory of an air
mass passes through both stations. This is accomplished by using
neural network calculations that, in turn, use as inputs HYSPLIT
trajectories, AOD values at a nearby station and parameterized var-
iables that represent the annual meteorological average trend. In this

work, AERONET stations located in the surroundings of Washington,
DC, USA (called here Eastern US region) were used as the case study.
The zone was chosen because it has high-resolution meteorological
databases and presents a high density of AERONET stations. In order
to verify the applicability of the method to other regions with
different characteristics, we used stations located in Spain, Portugal
and Algeria (called the Iberian Peninsula region). This zone is char-
acterized by a lower resolution in the wind fields, and stations
sparsely located.

Although the method is used here to predict AOD values
measured at 440 nm, it can be also extended to predict values at
other wavelengths or different aerosol optical properties. In addi-
tion, it can be used not only to fill temporary gaps, but also to
extrapolate the AOD values for a period after or before an AERONET
station was operative.

2. Databases and tools

In this work, we integrated an aerosol optical properties data-
base (AERONET), with an air mass trajectory model (HYSPLIT) and a
predictive tool (Artificial Neural Networks, ANN) to calculate the
AOD at a given site. All of them are described in the following
sections.

2.1. AERONET

AERONET is a federated international network of radiometers,
widely used to retrieve information about local aerosol optical
properties (e.g. Putaud et al., 2014; Rahul et al., 2014). The network
is coordinated by the NASA Goddard Space Flight Center, which
maintains an historical record of over 800 automatic sun/sky CIMEL
photometers worldwide. The principle of operation of the CIMEL
instrument is to acquire aureole and sky radiance measurements
every 15 min, considering that valid measurements are done only
when the sun is visible. Sun and sky measurements are performed
in seven spectral bands (340, 380, 440/441, 500, 670, 870 and
1020 nm), from which the AOD, Angstrém coefficient, size distri-
bution and single scattering albedo, among others, are derived. A
detailed description of the instruments and data acquisition pro-
cedure was given by Holben et al. (1998, 2001). In this work, only
Level 2.0 data were used (cloud screened and quality-assured),
even though this largely reduces the number of available values.
An accuracy assessment of the AERONET retrievals, as well as the
algorithms used to obtain the inversion products, can be found in
the work of Dubovik et al. (2000). The results presented in this
work are based on the AOD values at 440/441 nm but, for simplicity,
they will be referenced as AOD. Tests performed for other wave-
length and for Angstrom coefficient (not shown here) yields com-
parable results to those obtained for AOD at 440/441 nm. Thus, the
method described here is suitable to be used at any wavelength or
for any other aerosol optical properties.

2.1.1. AERONET sites description

The surroundings of Washington, DC are a region with a high
number of AERONET stations. We selected an area of about
130 x 300 km (longitude—latitude) that includes nine stations
operative in at least 3 months in any year during the period
2004—2012. This area covers the state of Delaware, Washington,
DC, and the eastern portions of the states of Virginia and Maryland,
totaling about 15 million inhabitants. A map including the locations
of the AERONET stations is shown in Fig. 1.

Table 1 contains information about latitudes, longitudes,
heights, and period of measurements of all the stations used in this
work, together with the number of measurements and the average
AOD value.
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Fig. 1. Map of the Eastern US region.

Note that COVE and COVE_SEAPRISM (sites 1 and 2) are located
in the same platform over the ocean and thus considered, in this
work, as a single site.

2.2. HYSPLIT model

The HYSPLIT model was designed by the Bureau of Meteorology
of Australia and the ARL-NOAA of USA (Draxler and Hess, 1997,
1998) and is commonly used to model a wide range of scenarios
related to the regional or long-range transport, dispersion, and
deposition of aerosols and air pollutants. It uses a hybrid approach,
in which the calculation employs puff distribution in the horizontal
direction and particle dispersion in the vertical one under a
Lagrangian framework. The transport and dispersion of a parcel is
calculated by assuming the release of a single puff that will expand,
and then it will split into several puffs when its size exceeds the
meteorological grid cell spacing (40 x 40 km in the Eastern US
region, see below). The trajectory calculation is obtained by the
time integration of the position of an air parcel as it is transported
across the wind field. HYSPLIT can also be used to calculate the
position of an air parcel by moving backward in time, ending at a
receptor at a particular time. The results of the HYSPLIT analysis of

Table 1
Eastern US AERONET stations characteristics.

forward and backward trajectories have been used in a large variety
of aerosol and pollutants related studies (e.g. Valenzuela et al,,
2012; Wang et al., 2011; Guo et al. 2010).

The meteorological field datasets used in HYSPLIT comes from a
variety of sources, with different spatial and temporal resolutions.
The one used for the Eastern US region was the Eta Data Assimi-
lation System (EDAS) (Black, 1994) from National Centers for
Environmental Prediction (NCEP), which has a 40 x 40 km Lambert
Conformal Grid (185 by 129 cells) and 26 pressure levels, up to
50 hPa, covering the continental United States with a temporal
resolution of 3 h. Intermediate points in the spatial and temporal
grids are interpolated internally by the HYSPLIT model. As the NCEP
dataset is only available for North America, for the Iberian Penin-
sula region we used the Global Data Assimilation System dataset
(GDAS) (NOAA, 2003) from NCEP, which uses a global 1° x 1° grid
(360 by 181 cells) and 12 pressure levels, up to 50 hPa, with a
temporal resolution of 3 h.

2.3. Neural networks

Artificial neural networks are a powerful tool that can be used in
a wide variety of complex problems, particularly in the fields of
association, classification and prediction. It has been shown that
neural networks can solve almost any problem more efficiently
than the traditional modeling and statistical methods (Hornik,
1993). A neural network has the capacity to recognize patterns
and make predictions from new data, that is to say, to generalize
the observed behavior, rather than simply to memorize a given
training data set. In the particular case of the atmospheric sciences,
several works have been published in the last two decades (e.g.
Olcese and Toselli, 2004; Miller and Emery, 1997; Fontes et al.,
2014; Guo et al. 2009).

Typically, an artificial neural network is composed of a set of
neurons grouped in two or more layers: one input layer with as
many neurons as input variables, zero or more hidden layers with a
variable number of neurons, and one output layer, with as many
neurons as output variables. There are no predetermined rules to
define neither how many hidden layers should be included in a
neural network, nor how many neurons should contain each of
these layers. Some authors indicate different numbers of hidden
neurons as a function of the number of inputs, but the quantity and
quality of the input data are a key factor in the final decision (Wang
et al., 1993). A similar situation occurs in terms of the size of the
dataset needed to obtain the best training results from the network,
which is usually dependent on the complexity of the problem.

Multilayer Perceptron (MLP) is the most common and successful
neural network architecture with feed-forward network topology.
Each of the previously described layers uses a linear combination
function to interact with the neurons in the next layer. The inputs

Name # Location Lat; long Elevation Measurement dates Number of days with  Number of hours with  Average
[degrees] [masl] measurements measurements AOD
COVE 1 Chesapeake Lighthouse  36.90; —75.71 37 Oct-1999 — Jan-2008 1598 10,990 0.245
ocean platform, Virgina
COVE_SEAPRISM 2 Chesapeake Lighthouse 36.90; —75.71 24 Apr-2005 — Dec-2012 37 275 0.248
ocean platform, Virgina
GSFC 3 Greenbelt, Maryland 38.99; -76.84 87 May-1993 — Dec-2012 4061 27,586 0.224
MD_Science_Center 4  Baltimore, Maryland 39.28; -76.62 15 Sep-1999 — Dec-2012 2573 16,995 0.227
NASA_LaRC 5 Hampton, Virginia 37.10; —-76.38 5 Nov-2004 — Dec-2012 26 151 0.097
SERC 6  Annapolis, Maryland 38.88; —76.50 5 Nov-1994 — Dec-2012 1669 11,310 0.244
USDA-BARC 7  Beltsville, Maryland 39.03; -76.93 46 Dec-2004 — May-2006 216 1274 0.174
USDA-Howard 8  Beltsville, Maryland 39.05; -76.88 52 Jul-2006 — Apr-2007 164 1035 0.196
Wallops 9 Wallops Island, Virginia 37.94; —-75.48 10 Jul-1993 — Dec-2012 2038 14184 0.235
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are fully connected to the hidden layer, which is fully connected to
the outputs. These networks are used to create a model and, in that
way, map the input to the output using historical data. These net-
works are called supervised networks because they need a desired
output to learn (supervised training). For examples of MLP appli-
cations in the atmospheric sciences, see the work of Gardner and
Dorling (1998). The most common supervised training algorithm
is the so-called backpropagation (Haykin, 1994). With back-
propagation, the input data are repeatedly presented to the neural
network, the output is compared to the desired output, and an error
is computed. This error is then fed back (backpropagated) to the
neural network and used to adjust the weights such that the error
decreases with each iteration and the neural model gets closer to
the known output. This process is known as “training”. This kind of
training is relatively easy and offers good support for prediction
applications. All the Neural Networks processing presented in this
work have been carried out using the Neural Network Toolbox
Matlab R2011B (Mathworks®).

3. Methodology

The steps to calculate a missing AOD value at an AERONET sta-
tion are briefly summarized here, and described with more detail in
the following subsections.

1) HYPLIT trajectories: one 120-h HYSPLIT back trajectory at each
height is generated for each hour with a valid AOD measure-
ment for every site. As they are back trajectories, these sites are
labeled as ending stations (Section 3.1).

2) Trajectories selection: for each of the previously calculated back
trajectories, a test is performed to check if it passes through
another station (labeled as starting stations) and if it complies
with the established criteria. The combinations of the different
options for each criterion will lead to 18 scenarios (i.e. datasets)
(Section 3.2).

3) Dataset generation: each of the 18 input/output datasets for
ANN processing is generated. Each element of these sets com-
prises the parameters obtained from one trajectory connecting
the starting and ending AERONET stations, the AOD values
recorded at both stations, and parameters associated with
meteorological conditions (Section 3.3).

4) Neural networks calculations: each of the 18 datasets was
independently used to train 56 neural networks with different
topologies. The network and the dataset with the best coeffi-
cient of determination (r?) were chosen to calculate the missing
AOD values (Section 3.4).

3.1. HYSPLIT trajectories

One 120-h HYSPLIT backward trajectory was calculated at every
hour on the hour, provided there is an AOD measurement in the
+30 min range of the corresponding hour. That was done for every
station in the selected years. In the case of several values reported
during that interval, only the nearest one to the hour on the hour
was selected.

Different air masses, with different trajectories, can reach the
same point at the same time, but at different heights. Nevertheless,
aerosol optical depth is defined as the integrated extinction coef-
ficient over a vertical column of unit cross section. Thus, in order to
account for the aerosol masses that can be present at different
heights, the previously described backward trajectories have also
been calculated starting at different heights above ground level (0,
500, and 1000 m).

3.2. Trajectories selection

The next step was to determine if each of the previously
calculated trajectories pass through another AERONET station. In
order to do that, it is necessary to define the maximum horizontal
distance, between the measurement site and the trajectory path,
which will be considered as acceptable. A large distance could
result in large uncertainties while a short distance will lead to a
small number of trajectories in the dataset. Thus, three different
maximum horizontal distances have been considered as options (5,
10, and 15 km).

Similarly, it is necessary to define a minimum travel time to
consider a trajectory as valid. For simplicity, in this method the
starting and ending points of a backward trajectory are set at the
hour on the hour (the closest one to the measurement value).
Consequently, for a 1-h trajectory (the minimum travel time in this
method), the time difference between the measurements at the
two AERONET stations could correspond to a real time between 1
and 119 min, what certainly could lead to a large relative error in
the travel time parameter. On the other hand, longer minimum
times will reduce the number of eligible trajectories as many sta-
tions are relatively close together. Thus, we considered as options
for the minimum travel time 1, 2, and 3 h.

Regarding the height of the ending point of the trajectory we
considered two options: one including only backward trajectories
starting at ground level and the other one considering all the three
different heights (0, 500, and 1000 m above ground level).

Once established that a trajectory is eligible according to the
previously described criteria, it is checked if there is an AOD
measurement for the starting station at the air mass arrival time
(again, in a +30 min range). If this is the case, the date, the AERONET
stations numbers, the trajectory arrival altitude, the AOD values at
both stations, the travel time, and the distance traveled by the air
mass (not the linear distance between both sites) are recorded,
constituting one element of a dataset, which will feed the ANN.

The combination among all the options allowed for the three
mentioned criteria (three maximum site-trajectory distances, three
minimum travel times, and two height options at the ending point)
lead to a total of 18 scenarios (Table 2). The datasets generated for
each of these cases have been used in the ANN training to deter-
mine the best option for each criterion (see Section 3.4).

3.3. Dataset generation

Certainly, the meteorological variables (mainly wind speed and
direction, temperature, relative humidity and rain/snow episodes)
have a large effect on the measured AOD values and its temporal
variation (Kim et al., 2007). However, because aerosols can travel a
long time and under different weather conditions (some trajec-
tories span over several days) it is very difficult to appropriately
consider these effects. One way to get through this difficulty in the
ANN calculations is using the Julian Day (JD), as it is reasonable to
assume that those parameters have similar variations along each
year. The mayor drawback of using the JD is that although January
1st and December 31st have, statistically, the same weather con-
ditions, their JDs are in the opposite ends of the scale (i.e. 1 and
365). To overcome this fact, a Modified Julian Day (MJD) and a
Modified Season (MS) are defined, based on the proximity of a
given day to the middle days of summer and winter (in the
Northern Hemisphere). Considering these days as the typical
weather conditions for summer and winter, respectively, the
midsummer day (Julian day 217) will be represented by the
maximum M]D value (91), whereas the midwinter day (Julian day
35) will have the minimum MJD value (—91). The variation of the
M]JD values in between those numbers will represent the variation
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Table 2

Scenarios used for the ANN calculation.
Heights [m.a.g.l.] Site radius [km] Minimum time [h] Number of cases Training r? Validation r? Testing r? All 12
0 5 1 1260 0.885 0.762 0.729 0.845
0 5 2 946 0.762 0.716 0.504 0.711
0 5 3 728 0.904 0.563 0.590 0.787
0 10 1 5097 0.885 0.815 0.787 0.856
0 10 2 3883 0.709 0.642 0.598 0.681
0 10 3 2964 0.712 0.646 0.607 0.684
0 15 1 11,210 0.667 0.621 0.658 0.659
0 15 2 8682 0.692 0.646 0.667 0.681
0 15 3 6678 0.857 0.766 0.769 0.830
0/500/1000 5 1 3015 0.618 0.598 0.527 0.601
0/500/1000 5 2 2056 0.924 0.787 0.704 0.861
0/500/1000 5 3 1473 0.776 0.746 0.716 0.760
0/500/1000 10 1 11,964 0.848 0.805 0.783 0.832
0/500/1000 10 2 8352 0.845 0.787 0.819 0.830
0/500/1000 10 3 5952 0.846 0.790 0.692 0.814
0/500/1000 15 1 26,157 0.870 0.848 0.837 0.863
0/500/1000 15 2 18,567 0.867 0.828 0.835 0.856
0/500/1000 15 3 13,255 0.828 0.824 0.781 0.819

Different scenarios used to find the best conditions for AOD calculation, together with the ANN coefficients of determination for the different groups. Bolded line indicates the

chosen scenario.

in the weather conditions for the transition from summer to winter
and vice versa. In addition, MS will be equal to +1 in the days when
the MJD increases, and equal to —1 when it decreases (Fig. 2). The
reason behind this choice is that it is expected that the M]JD and the
MS be correlated to the meteorology along the year. Thus, in this
method, MJD and MS are used to parameterize the effects of the
meteorology on the AOD calculation. Clearly, these variables do not
represent the short-term (weekly, monthly, or even seasonal) var-
iations of the meteorology, but only its annual average trend. They
can be calculated as:

if JD <35 MD=-56—-JD MS=-1
ifID>35andJD <217 : MD=—-126+JD MS=+1
if ID>217 MD=309—JD MS=-1

As the stations are located on different environments, and the
different land uses and topography under the path of the air mass
have direct influence on the AOD value, a number (1-9) was
assigned to each station and these numbers have also been
included as variables in the input dataset. Assuming that there is a
more frequent path between two stations (given by the dominant
wind fields in the region), it is reasonable to associate the effects of
the topography and the land use with the numbers of the two
stations connected by a trajectory (i.e. 56 possible combinations, as
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Fig. 2. MJD and MS values as a function of Julian Day.

stations 1 and 2 are grouped).

Thus, a total of nine inputs and one output variable were used
for the training purpose. Table 3 shows the summary and statistical
information about the variables.

3.4. Neural networks calculations

In this work, the used neural network architecture was the feed
forward, multi-layer perceptron (MLP), widely considered as
capable to approximate any function, given an acceptable number
of data and the right number of neurons. The dataset was randomly
divided into three subsets: training, validation and testing.
Following Perez and Reyes (2002), the training of the neural net-
works was conducted using 70% of the data set, leaving 15% for the
validation and 15% for testing purposes. All the input and output
variables were separately normalized between —1 and +1. A dis-
tribution frequency comparison among all subsets has been carried
out to ensure their representativeness. The validation set was used
to determine the end point for the training process, in order to
improve their generalization ability. The independent testing set
was ignored in all steps of the training process and was solely used
for the statistical comparison of the obtained results against unseen
data.

The results obtained through neural network simulations
depend on the network topology and activation function. In order
to identify the configuration that gives the best results, different
number of hidden layers and neurons have been used, as well as
different kind of activation functions. A total of 56 different

Table 3
Variables used in the ANN calculation.

Variable Type Range of values
Ending station Input 1-9

Starting station Input 1-9

Trajectory altitude at ending station Input 0, 500 and 1000 m
M]D at ending station Input -91-92

MS at ending station Input -1/1

Hours elapsed between stations Input 1-120 h

Distance covered between stations Input <5—4523 km

AOD recorded at ending station Input 0.01-2.02

AOD recorded at starting station Output 0.01-2.12
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combinations have been tested. The parameters that were modified
and its possible values are:

o Hidden layers: one or two.

e Activation functions: Tan-Sigmoid or Linear, but in each layer all
the activation functions have to be the same.

e Number of neurons in the hidden layer(s): from 4 to 60 total
neurons, distributed in one or two layers.

For each of the 18 scenarios described in Section 3.2, an ANN
was trained for each of the 56 network topologies. After training,
the average coefficient of determination (calculated vs. measured
AOD) for the testing dataset of each one of the 56 networks was
used to choose the best configuration, which resulted in two hid-
den layers (the first one with 40 neurons and the second one with
6) and all the activation functions set to Tan-Sigmoid.

4. Results

In Section 4.1, we present an analysis of the direct correlation
between AERONET AOD measurements at two stations and another
correlation incorporating HYSPLIT trajectories. Then, in Section 4.2,
we show the improvement reached by using the ANN simulation in
the Eastern US region. Finally, in Section 4.3, we validate the
method by applying it to the Iberian Peninsula region.

4.1. Direct comparison

One of the frequently used approaches to estimate a missing
daily AOD value is to use the average value (AOD,y) for this JD
calculated by using all the other years with measurements. To
assess the errors associated to this approach, we compared the AOD
value for every day and every year against AOD,,. As an example,
the results of this approach for station GSFC are shown in Fig. 3.
Fig. 3a shows the absolute AOD difference between every day for all
the years and the corresponding AOD,,. Here, it can be observed
that the usage of this approach leads frequently to absolute errors
of up to +0.7 units. These errors are especially noticeable during the
months of July and August, which shows a seasonal variation
probably associated to the different weather conditions on different
years. Fig. 3b shows the relationship between AOD,, and the real
AOD value for every day and every year. The diagonal bands are a
result of the way of calculating the average values. The 12 for the
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linear fit is 0.29. Similar plots are observed for all the other stations,
with r? values even lower (not shown). Overall, the results show
that this approach is not a reliable way to estimate missing AOD
values.

Another simple way to estimate a missing AOD value at a given
station is by using simultaneous historical records at this and at
another station to obtain a correlation function between them.

The 2D histogram for all the pairs of AOD values (77,914) that
were simultaneously recorded (in a +30 min interval) at any two
stations is shown in Fig. 4. This correlation gives a linear coefficient
of determination equal to 0.69. Although this could be considered a
reliable fit, note that this correlation is mainly driven by the rela-
tionship between nearby stations, as it is shown in Fig. 5. Each of
the r° values in this figure corresponds to the linear fit for all the
data of a given pair of stations, provided there are more than 10
values. As seen, the data fit an exponential decay function
(? = 0.67), showing that beyond about 200 km the 1 values
decrease rapidly, making the approach unreliable for stations
separated by relatively long distances. Here, it is important to
remember that the Eastern US region has an unusually large den-
sity of AERONET stations. In most regions of the world, the usual
distance between AERONET stations is of several hundred

Station B = 0.041 + 0.829 Station A

AOD Station B

AOD Station A

Fig. 4. Relationship between AOD values measured at two AERONET stations at the
same time and its linear fit.
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Fig. 3. a) Absolute differences between every daily AOD value and the AOD average of the corresponding Julian Day of all the other years. b) Correlation between daily AOD values
and the average AOD value for the same Julian Day measured in all the other years. Both plots correspond to GSFC AERONET station (Station 3).
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kilometers. On the other hand, it is reasonable to assume that if it is
cloudy at one station, which is one of the main reasons for the lack
of data in AERONET stations, the same condition will prevail at all
the nearby stations. Thus, we conclude that, if the cause of the lack
of data is a cloudy weather, this approach is not applicable even if
the stations are very close to each other.

Another approach to estimate AOD values is to assume that the
AOD measured at a station is a consequence, at least in part, of the
aerosol transport. Thus, a possible way to estimate AOD values is to
correlate the AAOD between two stations and the elapsed time
used by the air mass to travel between them calculated through
HYSPLIT back trajectories starting at 0, 500 and 1000 m (trajectories
were calculated using 1 h as minimum air mass travel time and
15 km minimum distance). Fig. 6 shows the frequency distribution
of the AAOD vs. time plot. The AOD value at a site is determined by
both the local sources and the transport. The fact of using a AAOD,
instead of the absolute AOD value, takes also into account (statis-
tically) not only the local sources and the emissions but also the
dispersion and the deposition along the trajectory. The significantly
lower amount of data at 12, 36, 60, etc. hours are due to the almost
absence of trajectories with AERONET measurements at those in-
tervals. At first sight, these values cannot be fitted to any function.
The data only show a slight increase in the AAOD as a function of
time at the same time that they become sparser. In order to
quantify this trend, a linear fit was done, showing a low coefficient
of determination of r?> = 0.13. Note that, by far, the largest con-
centration of point is located for trajectories of 1 h and AAOD equal
to zero. This result clearly means that this way of estimating AOD
values based on the travel time of the air mass trajectories is not
reliable.

Despite this poor result to predict AOD values, some interesting
aspects arise from the procedure followed to build this figure. As an
example, Fig. 7 shows the number of trajectories from and to Site 3,
as this is the location with the largest number of trajectories
(12,125, including 6882 from and 5243 to the site). Fig. 8 shows the
average AAOD between Station 3 and all the other stations. The
numbers on top of each box represent the average AAOD for air
masses going from Station n to Station 3, and the bottom numbers
are the average AAOD for air masses starting at Station 3 and
arriving to Station n. No data are shown for station 5, as the number
of trajectories is not enough to obtain a reliable statistic (See Fig. 7).
In all the cases shown in Fig. 8, the average variation of the AOD is
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Fig. 5. Correlation between distance and coefficient of determination for all AOD
values measured simultaneously in the pairs of stations.
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Fig. 6. Scatter plot of all the observed AAOD as a function of the time used for the air
mass to travel between two stations.

positive, meaning that the aerosol loading increases over time. The
largest variations are for air masses ending in sites 1 + 2 and 9, a
result that could have many and different causes. Thus, for the sake
of brevity, a detailed analysis will not be performed here.

It should be noted that other approaches in spatio-temporal
modeling for filling missing values, have been proposed (e.g.
Liang and Kumar, 2013; Oleson et al., 2012). However, they will not
be applied here.

4.2. ANN results

Being the results of the two previously described approaches
questionable to predict AOD values, the method combining AER-
ONET measurements, HYSPLIT trajectories and ANNs was applied.
In Section 3.2, 18 scenarios were presented, representing different
options of maximum site-trajectory distances, minimum travel
times, and height options at the ending station. As usual in ANNs,
the results that must be analyzed are the 12 values for the testing
dataset. In addition, to select the best scenario to apply the method,
it is necessary to take into account not only the value of the coef-
ficient of determination but also the number of elements in the
dataset. Thus, the chosen scenario includes trajectories arriving at
the three heights, a radius of 15 km around the site, and a minimum

Q o

= 247 — 2558
369 — 1970
432 1492
Q1281 — 351110
— 132

- 2\ |—515

— 11 ‘9
é — 186

— 225

00

Fig. 7. Number of trajectories from Site 3 to each site (upper number) and from each
site to Site 3 (lower number). The distances between sites are not in scale.
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of 2 h of travel time between stations (Table 2). This dataset sce-
nario included 18,567 cases and will be used, from now on, to
illustrate the application of the proposed method. Fig. 9 shows the
predicted vs. measured AOD values for each of the three groups in
which the dataset was divided (training, validation, and testing)
plus their r? coefficients, slopes and interception values and their
associate errors. The coefficient of determination for the whole
dataset was 0.855. This value is significantly better than the one
calculated by using a simple correlation between the AOD mea-
surements recorded simultaneously at two stations (Fig. 4). Besides,
unlike the first approach, only a few points deviate significantly
from the fitting line, mostly cases where the neural network pre-
dicts a small negative instead of a small but positive AOD value.
Many of these few predicted negative values have been observed to
be associated to long trajectories (more than 4 days). The cause of
these negative values has not been fully analyzed in this work, but
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Fig. 10. Histogram of residuals (predicted minus calculated AOD values) for all the
points in the Eastern US dataset.

they might be related to the inherent uncertainties of the method.
Fig. 10 shows a histogram of the residuals of the prediction,
calculated as the predicted minus the measured value for all the
points. This plot shows that in more than 85% of the cases, the
predicted AOD values fall within the +0.1 range of the measured
ones. For the whole dataset, the average relative error, compared to
the measured AOD values, was 25% (with 45% of the values having a
relative error of less than 10%).

In order to assess the effect of the meteorology in the ANN
prediction, a calculation using the same dataset but without using
the meteorological-related variables (M]D and MS) was performed.
The result for this calculation is that the r* coefficient for the whole
dataset and for the same scenario decreased from 0.855 to 0.611
(note that, as two variables have been removed, a new best neural
network topology had to be selected for this case). This result
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Fig. 9. Scatter plot of calculated vs. measured AOD for the different groups in which the dataset was divided.
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reinforces the importance of taking into account the seasonal
variability of the meteorological variables, even though it is incor-
porated by using two simple parameters.

Similarly, in order to test the effects of including actual meteo-
rological data, a calculation using temperature and relative hu-
midity at the ending stations as input variables (instead of MJD and
MS) has been performed. A new ANN topology was selected and the
calculations were performed using the same procedure. The r? of
the new calculation was 0.882, compared to 0.855 of the calculation
using MJD and MS. Besides, due to the lack of meteorological data,
the number of cases decreased from 18,567 to 16,321. Thus, as the
improvement in the r? was only 3%, with the added complexity in
the meteorological data retrieval and the loss of data, we consider
that, in this case, the usage of actual meteorological variables is not
justified.

Finally, we identified a gap in an AOD dataset and used the
method to predict the missing AOD values. The selected period
spans over September and October 2007 at the Wallops station
(Station 9). Fig. 11 shows the daily-averaged predicted values,
together with the values for the same dates measured for the years
1993—2012. Values for August and November 2007 are also
included. The average value for the two-month period for all the
years was (0.2 + 0.2), while the predicted average value was
(0.3 + 0.1). As seen, the predicted daily values fall within the same
range for the other years. Besides, the behavior showed by the
predicted points follows the general trend found by using the
previous and next months. A linear fit for the predicted values has
approximately the same slope than the trend for the four months
shown.

4.3. Iberian Peninsula region

The analysis presented in the previous section showed that the
method yields good results for the Eastern US region. However,
very few regions in the world have a similar density of AERONET
stations and a meteorological HYSPLIT database with the same
geographic resolution. This could potentially lead to lower co-
efficients of determination, because HYSPLIT trajectories will have
larger errors and because fewer trajectories will pass through two
sites. In order to verify the validity of the proposed method, we
applied it to another region with different characteristics in terms
of domain size, geography and density of AERONET stations, the
Iberian Peninsula.
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Fig. 11. Daily AOD values for the period 1993—2012 at Wallops AERONET station
(Station 9), together with the predicted values for the months of September and
October 2007 with their corresponding linear trends.

Similarly to the procedure followed for the Eastern US region, a
simple comparison between values simultaneously recorded at two
stations was performed first (Section 4.1). Then, the calculations
using ANN were carried out and the results were compared.

The zone under study (from now on Iberian Peninsula region)
includes stations operative in the period 2003—2012 in Spain (9
stations), Portugal (2 stations), and the northern portion of Algeria
(1 station), as shown in Fig. 12. AERONET station locations and AOD
measurement description are summarized in Table 4. This region
has a lower resolution in the wind fields and the stations are more
sparsely located than in the previous case. It spans on 15° x 8°
(about 1300 x 900 km) and the approximate population is 100
million inhabitants. The meteorological database used was the
Global Data Assimilation System (GDAS) (NOAA, 2003) from Na-
tional Centers for Environmental Prediction (NCEP), which uses a
global 1° x 1° grid (360 by 181 cells) and 12 pressure levels, up to
50 hPa, with a temporal resolution of 3 h.

The simple relationship between AOD values simultaneously
recorded at two stations has a r* = 0.106 (53,351 values, plot not
shown). One of the main reasons for this poor correlation is the
large separation between the stations, confirming the results
observed in Fig. 5.

To further verify the prediction ability of the proposed method,
we carried out the calculations using ANN, following the same
procedure described in Section 3. In this case, the selected ANN
topology was two hidden layers (the first one with 10 neurons, the
second one with 30 neurons) and all the activation functions set to
Tan-Sigmoid. The chosen scenario included trajectories arriving at
the three heights, a radius of 15 km around the site, and a minimum
of 2 h of travel time between stations (i.e. same scenario as for
Eastern US), resulting in a dataset with 9830 elements. The co-
efficients of determination for the three groups in which the
dataset was divided (training, validation, and testing) were
(0.73 + 0.01), (0.66 + 0.02) and (0.61 + 0.02), respectively. The
coefficient of determination for the whole dataset was (0.67 + 0.01)
with 77% of the data falling in the +0.1 range of the measured AOD.
The average relative error, compared to the measured AOD values,
was 33% (with 56% of the values having a relative error of less than
10%).

These results represent a substantial improvement over the
simple AOD correlation. In addition, although this r? value is lower
than the one obtained for the Eastern US region, is still good enough
to make reasonable AOD estimations. The reason of the difference
in the coefficients of determination between the two regions is
both the lower spatial resolution of the meteorological wind field
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Fig. 12. Map of the Iberian Peninsula region.
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Table 4

Iberian Peninsula AERONET stations characteristics.
Name # Location Lat; long Elevation = Measurement dates Number of days with ~ Number of hours Average AOD

[degrees] [masl] measurements with measurements

Huelva 1  Huelva, Spain 37.02; —6.57 25 Mar-2010 — Dec-2012 223 1961 0.148
Cabo_da_Roca 2 Cabo daRoca, Portugal  38.78; —9.50 140 Dec-2003 — Dec-2012 1052 7117 0.165
Barcelona 3 Barcelona, Spain 41.39; 2.12 125 Dec-2004 — Dec-2012 1854 13,558 0.208
Caceres 4 Cdceres, Spain 39.48; -6.34 397 Jul-2005 — Jun-2012 1421 11,450 0.129
Palencia 5 Palencia, Spain 41.99; —-4.51 750 Jan-2003 — Dec-2012 1670 12,607 0.141
El_Arenosillo 6  El Arenosillo, Spain 37.11; -6.73 0 Feb-2000 — Mar-2010 2404 19,681 0.167
Autilla 7  Autilla del Pino, Spain 42.00; —4.60 873 Sep-2007 — Dec-2012 384 2887 0.114
Granada 8  Granada, Spain 37.16; —3.61 680 Dec-2004 — Dec-2012 1493 12,780 0.179
Evora 9  Evora, Portugal 38.57; =791 293 Jul-2005 — Dec-2012 2201 18,054 0.145
Malaga 10  Malaga, Spain 36.72; —4.47 40 Feb-2009 — Dec-2012 1133 9528 0.171
Burjassot 11  Burjassot, Spain 39.51; —0.42 30 Apr-2007 — Dec-2012 1482 12,034 0.176
Blida 12 Blida, Algeria 36.50; 2.88 230 Oct-2003 — Mar-2012 1644 11,726 0.252

data and the lower density of AERONET stations (which results in
larger uncertainties in the air mass trajectory calculations).

4.4. Uncertainties

Beyond the high coefficient of determination obtained for the
AOD prediction using this method, here it is important to identify
the sources of uncertainties, which affect the results.

e AERONET measurements: AOD measurements are affected by
errors about +0.01. In addition, AOD values lower than 0.3 may
have increasingly larger errors (Dubovik et al., 2000).

e HYSPLIT trajectories: trajectory models are subject to un-
certainties arising from the interpolations of sparse meteoro-
logical data, assumptions regarding to vertical transport,
observational errors, sub-grid-scale phenomenon, turbulence,
convection, evaporation and condensation (Polissar et al., 1999).

e ANN configuration: given the inherent limitations of the neural
networks (to reach a local instead of a global minimum, infinite
possible topologies, etc.), the chosen configuration might not be
the best possible one (Stanley and Miikkulainen, 2002).

e Method assumptions:

e Trajectory distance to the starting station: considering that a
trajectory passes through an AERONET site if the distance is
less than 15 km (Section 3.2) we are assuming that the AOD
value measured at the station will be the same at 15 km from
it. The validity of this assumption will depend on the local
sources and transport in the region.

Trajectory heights at the ending station: for simplicity, only

three heights were considered for the trajectory ending point.

The intermediate heights are assumed to be represented by

these three heights.

Simplified meteorology: by using a parameterization to

consider the meteorology (MJD and MS), we are neglecting

the influence of the actual meteorological conditions on the

AOD values not only at both stations but also during the tra-

jectory of the air mass.

Measurement-trajectory time differences: the difference be-

tween the time of the AERONET measurement and the time of

the arrival/starting of the trajectory could be up to 30 min.

Adding the differences at both the arrival and starting points,

this could lead to a maximum absolute error of up to 59 min,

which leads to a large uncertainty for the shortest trajectories.

However, note that the duration of most of the trajectories

(Fig. 6) makes this error negligible.

5. Summary and conclusions

The aim of this work was to predict a missing AOD value at an
AERONET station. To accomplish this we firstly assessed the
applicability of three simple approaches, finding that none of them
produced good results under all conditions. To overcome these
limitations, we proposed a method based on the historical AOD
values at two given stations, air mass trajectories passing through
both stations (calculated by using the HYSPLIT model) and ANN
calculations to relate/process/link all the information. After care-
fully selecting the ANN topology and the best scenario (minimum
time of a trajectory, maximum distance between the trajectory and
the AERONET site, and height(s) of the trajectory) the method was
applied to two regions with different characteristics (density of
AERONET stations, meteorology, and wind fields spatial resolution):
Eastern US and Iberian Peninsula.

The method demonstrated to be robust yielding r? values of
0.855 and 0.67 for the Eastern US and Iberian Peninsula cases,
respectively, and showing a remarkable improvement over all
simple approaches. Although the average error for the Eastern US
region is 25%, almost half of the data showed relative errors less
than 10%. The application of the method to predict the AOD values
for a two-month gap in an AERONET station dataset showed
consistent results in terms of both the absolute values and trend
along the year.

This method also showed the importance of including a repre-
sentation of the meteorology, even in a simple way (here, as a
parameterization based on the Julian Day).

Although in this work we used AOD measured at 440 nm as the
predicted variable, the method is applicable to the prediction of
AOD at other wavelengths or to other aerosol optical properties
(Angstrom coefficient, asymmetry factor, etc.). In addition, even
though this method was thought to predict missing AOD values
(filling gaps or extrapolating data series) using backtrajectories, the
availability of HYSPLIT forecast trajectories gives the possibility of
using it to forecast AOD values (using forward trajectories), which
would constitute a valuable tool to feed air quality or radiative
transfer models.
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