444 research outputs found

    Quantifying absolute addressability in DNA origami with molecular resolution

    Get PDF
    Self-assembled DNA nanostructures feature an unprecedented addressability with sub-nanometer precision and accuracy. This addressability relies on the ability to attach functional entities to single DNA strands in these structures. The efficiency of this attachment depends on two factors: incorporation of the strand of interest and accessibility of this strand for downstream modification. Here we use DNA-PAINT super-resolution microscopy to quantify both incorporation and accessibility of all individual strands in DNA origami with molecular resolution. We find that strand incorporation strongly correlates with the position in the structure, ranging from a minimum of 48% on the edges to a maximum of 95% in the center. Our method offers a direct feedback for the rational refinement of the design and assembly process of DNA nanostructures and provides a long sought-after quantitative explanation for efficiencies of DNA-based nanomachines

    Real-time monitoring of beta-d-glucuronidase activity in sediment laden streams: A comparison of prototypes

    Get PDF
    AbstractDetection of enzymatic activities has been proposed as a rapid surrogate for the culture-based microbiological pollution monitoring of water resources. This paper presents the results of tests on four fully automated prototype instruments for the on-site monitoring of beta-d-glucuronidase (GLUC) activity. The tests were performed on sediment-laden stream water in the Hydrological Open Air Laboratory (HOAL) during the period of March 2014 to March 2015. The dominant source of faecal pollution in the stream was swine manure applied to the fields within the catchment. The experiments indicated that instrument pairs with the same construction design yielded highly consistent results (R2 = 0.96 and R2 = 0.94), whereas the results between different designs were less consistent (R2 = 0.71). Correlations between the GLUC activity measured on-site and culture-based Escherichia coli analyses over the entire study period yielded R2 = 0.52 and R2 = 0.47 for the two designs, respectively. The correlations tended to be higher at the event scale. The GLUC activity was less correlated with suspended sediment concentrations than with E. coli, which is interpreted in terms of indicator applicability and the time since manure application. The study shows that this rapid assay can yield consistent results over a long period of on-site operation in technically challenging habitats. Although the use of GLUC activity as a proxy for culture-based assays could not be proven for the observed habitat, the study results suggest that this biochemical indicator has high potential for implementation in early warning systems

    Proteome profiling in cerebrospinal fluid reveals novel biomarkers of Alzheimer's disease

    Get PDF
    Neurodegenerative diseases are a growing burden, and there is an urgent need for better biomarkers for diagnosis, prognosis, and treatment efficacy. Structural and functional brain alterations are reflected in the protein composition of cerebrospinal fluid (CSF). Alzheimer's disease (AD) patients have higher CSF levels of tau, but we lack knowledge of systems-wide changes of CSF protein levels that accompany AD. Here, we present a highly reproducible mass spectrometry (MS)-based proteomics workflow for the in-depth analysis of CSF from minimal sample amounts. From three independent studies (197 individuals), we characterize differences in proteins by AD status (> 1,000 proteins, CV < 20%). Proteins with previous links to neurodegeneration such as tau, SOD1, and PARK7 differed most strongly by AD status, providing strong positive controls for our approach. CSF proteome changes in Alzheimer's disease prove to be widespread and often correlated with tau concentrations. Our unbiased screen also reveals a consistent glycolytic signature across our cohorts and a recent study. Machine learning suggests clinical utility of this proteomic signature

    Complex multicomponent patterns rendered on a 3D DNA-barrel pegboard

    Get PDF
    DNA origami, in which a long scaffold strand is assembled with a many short staple strands into parallel arrays of double helices, has proven a powerful method for custom nanofabrication. However, currently the design and optimization of custom 3D DNA-origami shapes is a barrier to rapid application to new areas. Here we introduce a modular barrel architecture, and demonstrate hierarchical assembly of a 100 megadalton DNA-origami barrel of similar to 90nm diameter and similar to 250nm height, that provides a rhombic-lattice canvas of a thousand pixels each, with pitch of similar to 8nm, on its inner and outer surfaces. Complex patterns rendered on these surfaces were resolved using up to twelve rounds of Exchange-PAINT super-resolution microscopy. We envision these structures as versatile nanoscale pegboards for applications requiring complex 3D arrangements of matter, which will serve to promote rapid uptake of this technology in diverse fields beyond specialist groups working in DNA nanotechnology

    p53 and p16 expression profiles in vulvar cancer:a translational analysis by the Arbeitsgemeinschaft Gynäkologische Onkologie Chemo and Radiotherapy in Epithelial Vulvar Cancer study group

    Get PDF
    Background: There are 2 known pathways for tumorigenesis of vulvar squamous cell carcinoma—a human papillomavirus–dependent pathway characterized by p16 overexpression and a human papillomavirus–independent pathway linked to lichen sclerosus, characterized by TP53 mutation. A correlation of human papillomavirus dependency with a favorable prognosis has been proposed. Objective: The objective of the study was to further understand the role of human papillomavirus and p53 status in vulvar squamous cell carcinoma and characterize its clinical relevance. Study Design: The Arbeitsgemeinschaft Gynaecological Oncology Chemo and Radiotherapy in Epithelial Vulvar Cancer-1 study is a retrospective cohort study of 1618 patients with primary vulvar squamous cell carcinoma Fédération Internationale de Gynécologie et d'Obstétrique stage ≥1B treated at 29 gynecologic cancer centers in Germany between 1998 and 2008. For this translational substudy, formalin-fixed paraffin-embedded tissue was collected. A tissue microarray was constructed (n=652 samples); p16 and p53 expression was determined by immunohistochemistry. Human papillomavirus status and subtype were analyzed by polymerase chain reaction. Results: p16 immunohistochemistry was positive in 166 of 550 tumors (30.2%); p53 staining in 187 of 597 tumors (31.3%). Only tumors with available information regarding p16 and p53 immunohistochemistry and without p53 silent expression pattern were further analyzed (n=411); 3 groups were defined: p53+ (n=163), p16+/p53− (n=132), and p16−/p53− (n=116). Human papillomavirus DNA was detected in 85.6% of p16+/p53− tumors; human papillomavirus-16 was the most common subtype (86.3%). Patients with p16+ tumors were younger (64 vs 72 years for p53+, respectively, 69 years for p16−/p53− tumors; P<.0001) and showed lower rates of lymph-node involvement (28.0% vs 42.3% for p53+, respectively, 30.2% for p16−/p53− tumors; P=.050). Notably, 2-year-disease-free and overall survival rates were significantly different among the groups: disease-free survival, 47.1% (p53+), 60.2% (p16−/p53−), and 63.9% (p16+/p53−) (P<.001); overall survival, 70.4% (p53+), 75.4% (p16−/p53−), and 82.5% (p16+/p53−) (P=.002). In multivariate analysis, the p16+/p53− phenotype showed a consistently improved prognosis compared with the other groups (hazard ratio, 0.66; 95% confidence interval, 0.44–0.99; P=.042). Conclusion: p16 overexpression is associated with an improved prognosis whereas p53 positivity is linked to an adverse outcome. Our data support the hypothesis of a clinically relevant third subgroup of vulvar squamous cell carcinoma with a p53−/p16− phenotype showing an intermediate prognosis that needs to be further characterized

    Prime Focus Spectrograph (PFS) for the Subaru Telescope: Overview, recent progress, and future perspectives

    Full text link
    PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ~1.6-2.7A. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project is now going into the construction phase aiming at undertaking system integration in 2017-2018 and subsequently carrying out engineering operations in 2018-2019. This article gives an overview of the instrument, current project status and future paths forward.Comment: 17 pages, 10 figures. Proceeding of SPIE Astronomical Telescopes and Instrumentation 201

    Pseudorapidity and transverse momentum dependence of flow harmonics in pPb and PbPb collisions

    Get PDF
    info:eu-repo/semantics/publishe

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

    Get PDF
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at root s = 8 TeV. The data correspond to an integrated luminosity of 19.7 fb(-1). The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t (t) over bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 confidence level for the product of the production cross section and branching fraction sigma(gg -> X) B(X -> HH -> b (b) over barb (b) over bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with amass scale Lambda(R) = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV
    corecore